Let a= base of a regular tetrahedron, l= slant height of a a regular tetrahedron, r= radius of a sphere inscribed in a regular tetrahedron.
The surface area of a sphere
A=4πr2 Given A=144cm2
4πr2=144r2=π36
r=π6π≈3.4(cm)SD=l=a23,ED=23a From the right triangle SED
SD2=SE2+ED2
l2=h2+(23a)2
43a2=h2+121a2
h=36a
∠ESD=30°,∠EDS=60° Right triangle SOF
SO=2OF=2r
h=SE=SO+OE=2r+r=3r
h=3r=π18π(cm)≈10.155(cm) The altitude of the tetrahedron is h=π18πcm≈10.155cm
If a sphere is inscribed in a cube of side a, then
r=2a,Vsphere=34πr3=6πa3
Comments