Let a = a= a = base of a regular tetrahedron, l = l= l = slant height of a a regular tetrahedron, r = r= r = radius of a sphere inscribed in a regular tetrahedron.
The surface area of a sphere
A = 4 π r 2 A=4\pi r^2 A = 4 π r 2 Given A = 144 c m 2 A=144cm^2 A = 144 c m 2
4 π r 2 = 144 4\pi r^2=144 4 π r 2 = 144 r 2 = 36 π r^2=\dfrac{36}{\pi} r 2 = π 36
r = 6 π π ≈ 3.4 ( c m ) r=\dfrac{6\sqrt{\pi}}{\pi}\approx3.4(cm) r = π 6 π ≈ 3.4 ( c m ) S D = l = a 3 2 , E D = a 2 3 SD=l=a\dfrac{\sqrt{3}}{2}, ED=\dfrac{a}{2\sqrt{3}} S D = l = a 2 3 , E D = 2 3 a From the right triangle S E D SED SE D
S D 2 = S E 2 + E D 2 SD^2=SE^2+ED^2 S D 2 = S E 2 + E D 2
l 2 = h 2 + ( a 2 3 ) 2 l^2=h^2+(\dfrac{a}{2\sqrt{3}})^2 l 2 = h 2 + ( 2 3 a ) 2
3 4 a 2 = h 2 + 1 12 a 2 \dfrac{3}{4}a^2=h^2+\dfrac{1}{12}a^2 4 3 a 2 = h 2 + 12 1 a 2
h = 6 3 a h=\dfrac{\sqrt{6}}{3}a h = 3 6 a
∠ E S D = 30 ° , ∠ E D S = 60 ° \angle ESD=30\degree, \angle EDS=60\degree ∠ ES D = 30° , ∠ E D S = 60° Right triangle S O F SOF SOF
S O = 2 O F = 2 r SO=2OF=2r SO = 2 OF = 2 r
h = S E = S O + O E = 2 r + r = 3 r h=SE=SO+OE=2r+r=3r h = SE = SO + OE = 2 r + r = 3 r
h = 3 r = 18 π π ( c m ) ≈ 10.155 ( c m ) h=3r=\dfrac{18\sqrt{\pi}}{\pi}(cm)\approx10.155(cm) h = 3 r = π 18 π ( c m ) ≈ 10.155 ( c m ) The altitude of the tetrahedron is h = 18 π π c m ≈ 10.155 c m h=\dfrac{18\sqrt{\pi}}{\pi}cm\approx10.155cm h = π 18 π c m ≈ 10.155 c m
No right answer.
Comments