Question #150235
The surface area of a sphere inscribed in a regular tetrahedron is 144 cm2
22. What is the altitude of the tetrahedron?.

a) 20 cm
b) 24 cm
c) 28 cm
d) 48 cm
1
Expert's answer
2020-12-17T08:30:56-0500


Let a=a= base of a regular tetrahedron, l=l= slant height of a a regular tetrahedron, r=r= radius of a sphere inscribed in a regular tetrahedron.

The surface area of a sphere


A=4πr2A=4\pi r^2

Given A=144cm2A=144cm^2

4πr2=1444\pi r^2=144r2=36πr^2=\dfrac{36}{\pi}


r=6ππ3.4(cm)r=\dfrac{6\sqrt{\pi}}{\pi}\approx3.4(cm)SD=l=a32,ED=a23SD=l=a\dfrac{\sqrt{3}}{2}, ED=\dfrac{a}{2\sqrt{3}}

From the right triangle SEDSED


SD2=SE2+ED2SD^2=SE^2+ED^2

l2=h2+(a23)2l^2=h^2+(\dfrac{a}{2\sqrt{3}})^2

34a2=h2+112a2\dfrac{3}{4}a^2=h^2+\dfrac{1}{12}a^2

h=63ah=\dfrac{\sqrt{6}}{3}a

ESD=30°,EDS=60°\angle ESD=30\degree, \angle EDS=60\degree

Right triangle SOFSOF


SO=2OF=2rSO=2OF=2r

h=SE=SO+OE=2r+r=3rh=SE=SO+OE=2r+r=3r

h=3r=18ππ(cm)10.155(cm)h=3r=\dfrac{18\sqrt{\pi}}{\pi}(cm)\approx10.155(cm)

The altitude of the tetrahedron is h=18ππcm10.155cmh=\dfrac{18\sqrt{\pi}}{\pi}cm\approx10.155cm

No right answer.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS