We know that ,if "a,b" and "h" are the base edge,top edge and height of a frustum of a regular square pyramid,then formula for volume and lateral surface area are -
Volume"(V) =(1\/3)(a^2+b^2+ab)\u00d7h"
Lateral surface area"(F)=2(a+b)\\sqrt(((a-b)\/2)^2+h^2)"
Now according to the given problem,
"a=20 cm" , "b=10cm" ,"h=38cm"
Therefore required volume of the frustum of square pyramid is
"V=(1\/3)\u00d7((20)^2+(10)^2+(20\u00d710))\u00d738"
"=(1\/3)\u00d7(400+100+200)\u00d738" "cm^3"
"=(26600\/3)" "cm^3"
and Lateral surface area is
"F=2\u00d7(20+10)\u00d7\\sqrt(((20-10)\/2)^2+38^2)"
"=2\u00d730\u00d7\\sqrt(25+1444)" "cm^2"
"=60\u00d7\\sqrt1469" "cm^2"
Comments
Leave a comment