"h = 300\\; mm \\\\\n\nr = 100 \\;mm \\\\\n\nLateral \\;area\\; of \\;cylinder = 2\u03c0rh \\\\\n\n= 2 \\times 3.14 \\times 100 \\times 300 \\\\\n\n= 188520 \\; mm^2"
Answer: 188520 mm2
The lateral surface area "S_1" of a right circular cylinder with an altitude of "h_1=40\\ cm" and base diameter of "d=30\\ cm" is equal to "S_1=\\pi \\cdot d\\cdot h=\\pi\\cdot 40\\cdot 30=1200\\pi" ("cm^2" )
The lateral surface area "S_2" of a right circular cone with an altitude of "h_2=60\\ cm" and base diameter of "d=30\\ cm" is equal to "S_2=\\pi \\cdot r\\cdot l", where "r=\\frac{d}{2}=15\\ (cm)" is the radius of the base and "l=\\sqrt{(h_2)^2+r^2}=\\sqrt{60^2+15^2}=\\sqrt{3600+225}=\\sqrt{3825}=15\\sqrt{17}\\ (cm)" is the slant height of the cone. Therefore, "S_2=\\pi\\cdot 15\\cdot 15\\sqrt{17}=225\\sqrt{17}\\pi\\ (cm^2)".
The lateral surface area of a right circular cylinder with a right circular cone at its top is"1200\\pi+225\\sqrt{17}\\pi=75\\pi(16+3\\sqrt{17})\\ (cm^2)."
Comments
Leave a comment