Solution. The area of a equilateral triangle, which is the base of the prism
A = a 2 3 4 A=\frac{a^2\sqrt{3}}{4} A = 4 a 2 3 where a=10 cm is edges of the equilateral triangle.
Therefore
A = 1 0 2 3 4 = 25 3 c m 2 A=\frac{10^2\sqrt{3}}{4}=25\sqrt{3}cm^2 A = 4 1 0 2 3 = 25 3 c m 2 Find the volume of a right prism as
V = A h V=Ah V = A h where A is area of the base of the prism; h=80cm is lateral edge of the prism.
Hence
V = 80 × 25 3 = 2000 3 c m 3 ≈ 3464.1 c m 3 V=80\times25\sqrt{3}=2000\sqrt{3}cm^3\approx3464.1cm^3 V = 80 × 25 3 = 2000 3 c m 3 ≈ 3464.1 c m 3 Find the total area of the prism using formula
A t o t a l = 3 a h + 2 A b a s e A_{total}=3ah+2A_{base} A t o t a l = 3 ah + 2 A ba se
A t o t a l = 3 × 10 × 80 + 2 × 25 3 = 2400 + 50 3 ≈ 2486.6 c m 2 A_{total}=3\times 10\times80+2\times 25\sqrt{3}=2400+50\sqrt{3}\approx2486.6cm^2 A t o t a l = 3 × 10 × 80 + 2 × 25 3 = 2400 + 50 3 ≈ 2486.6 c m 2 Answer.
V = 2000 3 c m 3 ≈ 3464.1 c m 3 V=2000\sqrt{3}cm^3\approx3464.1cm^3 V = 2000 3 c m 3 ≈ 3464.1 c m 3
A t o t a l = 2400 + 50 3 ≈ 2486.6 c m 2 A_{total}=2400+50\sqrt{3}\approx2486.6cm^2 A t o t a l = 2400 + 50 3 ≈ 2486.6 c m 2
Comments