"V^2=x^2\\times y^2\\times z^2=x^2\\times y^2\\times (d^2-x^2-y^2);\\\\d\/dx: 2\\times x \\times y^2 \\times (d^2 -\\\\- x^2 - y^2) - x^2\\times y^2\\times 2x = 0;\\\\\n2\\times x\\times y^2\\times (d^2 - x^2 - y^2 - x^2) = 0;\\\\\n2\\times x^2 + y^2 = d^2;\\;1)\\\\ \n\nd\/dy:2\\times y\\times x^2\\times(d^2 - x^2 - y^2) -\\\\- x^2 \\times y^2 \\times 2y = 0;\\\\\n2\\times y\\times x^2\\times (d^2 - x^2 - y^2 - y^2) = 0;\\\\\nx^2 + 2y^2 = d^2\\;2)\\\\x^2-y^2=0;x=y;\\\\take \\;equation\\; 1:\\\\2\\times x^2+y^2=d^2\\; and\\;x=y=\\frac{d}{\\sqrt{3}};\\\\x^2+y^2+z^2=d^2;\\;then\\;x=y=z;\\\\The \\;largest\\; volume \\;of\\; a\\; rectangular\\\\ parallelepiped\\; is \\;under\\; the\\; condition\\; a=b=c;\\\\V=a^3;S=a^2+4\\times a^2=650;\\\\5\\times a^2=650;a^2=130;\\\\V=130\\times\\sqrt{130}sm^3;\\\\Answer:the\\; largest \\;volume\\;\\, is\\, V=130\\times\\sqrt{130}sm^3"
Comments
Leave a comment