Question #123070
Joe has 650 cm^2 of tin. He wants me to make a tin of can that can hold as much juice as possible. What dimensions should he use? What is the largest volume this can could have?
1
Expert's answer
2020-06-22T16:12:19-0400

V2=x2×y2×z2=x2×y2×(d2x2y2);d/dx:2×x×y2×(d2x2y2)x2×y2×2x=0;2×x×y2×(d2x2y2x2)=0;2×x2+y2=d2;  1)d/dy:2×y×x2×(d2x2y2)x2×y2×2y=0;2×y×x2×(d2x2y2y2)=0;x2+2y2=d2  2)x2y2=0;x=y;take  equation  1:2×x2+y2=d2  and  x=y=d3;x2+y2+z2=d2;  then  x=y=z;The  largest  volume  of  a  rectangularparallelepiped  is  under  the  condition  a=b=c;V=a3;S=a2+4×a2=650;5×a2=650;a2=130;V=130×130sm3;Answer:the  largest  volume  isV=130×130sm3V^2=x^2\times y^2\times z^2=x^2\times y^2\times (d^2-x^2-y^2);\\d/dx: 2\times x \times y^2 \times (d^2 -\\- x^2 - y^2) - x^2\times y^2\times 2x = 0;\\ 2\times x\times y^2\times (d^2 - x^2 - y^2 - x^2) = 0;\\ 2\times x^2 + y^2 = d^2;\;1)\\ d/dy:2\times y\times x^2\times(d^2 - x^2 - y^2) -\\- x^2 \times y^2 \times 2y = 0;\\ 2\times y\times x^2\times (d^2 - x^2 - y^2 - y^2) = 0;\\ x^2 + 2y^2 = d^2\;2)\\x^2-y^2=0;x=y;\\take \;equation\; 1:\\2\times x^2+y^2=d^2\; and\;x=y=\frac{d}{\sqrt{3}};\\x^2+y^2+z^2=d^2;\;then\;x=y=z;\\The \;largest\; volume \;of\; a\; rectangular\\ parallelepiped\; is \;under\; the\; condition\; a=b=c;\\V=a^3;S=a^2+4\times a^2=650;\\5\times a^2=650;a^2=130;\\V=130\times\sqrt{130}sm^3;\\Answer:the\; largest \;volume\;\, is\, V=130\times\sqrt{130}sm^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS