Consider the acute triangle as shown in the figure below:
Use Pythagoras theorem in triangle A B D ABD A B D as,
A B 2 = B D 2 + A D 2 AB^2=BD^2+AD^2 A B 2 = B D 2 + A D 2
1 5 2 = 1 0 2 + A D 2 15^2=10^2+AD^2 1 5 2 = 1 0 2 + A D 2
225 = 100 + A D 2 225=100+AD^2 225 = 100 + A D 2
Subtract 100 from both sides to isolate A D AD A D as,
225 − 100 = 100 + A D 2 − 100 225-100=100+AD^2-100 225 − 100 = 100 + A D 2 − 100
125 = A D 2 125=AD^2 125 = A D 2
A D = 125 AD=\sqrt{125} A D = 125
A D = 5 5 AD=5\sqrt{5} A D = 5 5
Again, use Pythagoras theorem in triangle A D C ADC A D C as,
A D 2 + D C 2 = A C 2 AD^2+DC^2=AC^2 A D 2 + D C 2 = A C 2
( 5 5 ) 2 + D C 2 = 1 8 2 (5\sqrt{5})^2+DC^2=18^2 ( 5 5 ) 2 + D C 2 = 1 8 2
125 + D C 2 = 324 125+DC^2=324 125 + D C 2 = 324
Subtract 125 125 125 from both sides to isolate D C DC D C as,
125 + D C 2 − 125 = 324 − 125 125+DC^2-125=324-125 125 + D C 2 − 125 = 324 − 125
D C 2 = 199 DC^2=199 D C 2 = 199
D C = 199 DC=\sqrt{199} D C = 199
So, the length of base of the acute triangle B C BC BC is,
B C = B D + D C BC=BD+DC BC = B D + D C
B C = 10 + 199 BC=10+\sqrt{199} BC = 10 + 199
Now, the area of he triangle is evaluated as,
Area( A ) (A) ( A ) = 1 2 ( B C ) ( A D ) =\frac{1}{2}(BC)(AD) = 2 1 ( BC ) ( A D )
= 1 2 ( 10 + 199 ) ( 5 5 ) =\frac{1}{2}(10+\sqrt{199})(5\sqrt{5}) = 2 1 ( 10 + 199 ) ( 5 5 )
≈ 134.76 \approx134.76 ≈ 134.76
Therefore, the area of the acute triangle is Area ( A ) (A) ( A ) = 1 2 ( 10 + 199 ) ( 5 5 ) ≈ 134.76 =\frac{1}{2}(10+\sqrt{199})(5\sqrt{5})\approx134.76 = 2 1 ( 10 + 199 ) ( 5 5 ) ≈ 134.76 i n . 2 in.^2 in . 2
Comments