Question #119339
In an acute trianGle ABC, an altitude AD is drawn. Find the area of triangle ABC if AB=15 in, AC=18 in, and BD= 10 in.
1
Expert's answer
2020-06-01T18:33:16-0400

Consider the acute triangle as shown in the figure below:





Use Pythagoras theorem in triangle ABDABD as,


AB2=BD2+AD2AB^2=BD^2+AD^2


152=102+AD215^2=10^2+AD^2


225=100+AD2225=100+AD^2


Subtract 100 from both sides to isolate ADAD as,


225100=100+AD2100225-100=100+AD^2-100


125=AD2125=AD^2


AD=125AD=\sqrt{125}


AD=55AD=5\sqrt{5}


Again, use Pythagoras theorem in triangle ADCADC as,


AD2+DC2=AC2AD^2+DC^2=AC^2


(55)2+DC2=182(5\sqrt{5})^2+DC^2=18^2


125+DC2=324125+DC^2=324


Subtract 125125 from both sides to isolate DCDC as,


125+DC2125=324125125+DC^2-125=324-125


DC2=199DC^2=199


DC=199DC=\sqrt{199}


So, the length of base of the acute triangle BCBC is,


BC=BD+DCBC=BD+DC


BC=10+199BC=10+\sqrt{199}


Now, the area of he triangle is evaluated as,


Area(A)(A) =12(BC)(AD)=\frac{1}{2}(BC)(AD)


=12(10+199)(55)=\frac{1}{2}(10+\sqrt{199})(5\sqrt{5})


134.76\approx134.76


Therefore, the area of the acute triangle is Area(A)(A) =12(10+199)(55)134.76=\frac{1}{2}(10+\sqrt{199})(5\sqrt{5})\approx134.76 in.2in.^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS