Question #97529
Let TES^1. Prove that for all φES, (T*φ)^ = (2π)^(n/2)(φ-hat)(T-hat).
1
Expert's answer
2019-11-04T09:24:22-0500

TS(given)T\in S(given)

To prove-for all ψS,F(Tψ)=(2π)n/2.F(ψ).F(T)\psi\in S,F(T*\psi)=(2π)^{n/2}.F(\psi).F(T)

F(T(t))=fourierF(T(t))= fourier transform of T(t)

(Tψ)(t)=T(x)ψ(tx)dx(T*\psi)(t)=\int_{-\infty} ^{\infty}T(x)\psi(t-x)dx

F(T(t))=(2π)1/2(T(t)exp(iwt)dtF(T(t))=(2π)^{-1/2}(\int_{-\infty}^{\infty}T(t)exp(-iwt)dt

F((Tψ)(t))=(2π)1/2((Tψ)(t)exp(iwt)dtF((T*\psi)(t))=(2π)^{-1/2}(\int_{-\infty}^{\infty} (T*\psi)(t) exp(-iwt)dt

F((Tψ)(t))=(2π)1/2((T(x)ψ(tx)exp(iwt)dx)dtF((T*\psi)(t))=(2π)^{-1/2}(\int_{-\infty}^{\infty} (\int_{-\infty} ^{\infty}T(x)\psi(t-x)exp(-iwt)dx)dt

We can change the order of the equation and separate T(x) as it will be a constant when integrated with respect to t.

F((Tψ)(t))=(T(x)(2π)1/2(ψ(tx)exp(iwt)dt)dxF((T*\psi)(t))=(\int_{-\infty}^{\infty} T(x) (2π)^{-1/2} (\int_{-\infty} ^{\infty}\psi(t-x)exp(-iwt)dt)dx

(2π)1/2(ψ(tx)exp(iwt)dt)=F(ψ(tx))(2π)^{-1/2} (\int_{-\infty} ^{\infty}\psi(t-x)exp(-iwt)dt)=F(\psi(t-x))

F((Tψ)(t))=(T(x)F(ψ(tx))dxF((T*\psi)(t))=(\int_{-\infty}^{\infty} T(x) F(\psi(t-x))dx ----(i)

By properties of Fourier Transform,

F(ψ(tx))=exp(iwt)F(ψ(x))F(\psi(t-x))=exp(-iwt)F(\psi(x))

Using this in equation (i)

F((Tψ)(t))=T(x)exp(iwt)F(ψ(t)dxF((T*\psi)(t))=\int_{-\infty}^{\infty} T(x) exp(-iwt)F(\psi(t)dx

F((Tψ)(t))=(2π)1/2F(ψ(t).(2π)1/2.T(x)exp(iwt)dxF((T*\psi)(t))=(2π) ^{1/2}F(\psi(t).(2π)^{-1/2 }. \int_{-\infty}^{\infty} T(x) exp(-iwt)dx

F((Tψ)(t))=(2π)1/2F(ψ(t).F(T(t))F((T*\psi)(t))=(2π) ^{1/2}F(\psi(t).F(T(t))

So,

F(Tψ)=(2π)n/2.F(ψ).F(T)F(T*\psi)=(2π)^{n/2}.F(\psi).F(T) where n=1n=1

(Proved)






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS