Question #97503
Let T be a tempered distribution. Then for all multi-indices a, we define ∂^(a)T to be the linear functional on S by (∂^(a)T)(φ) = (-1)^(|a|)T(∂^(a)φ), φES. Prove that ∂^(a)T is a tempered distribution.
1
Expert's answer
2019-11-01T10:16:30-0400

According to the definition of a tempered distribution, we need to prove that aT\partial^a T is a linear and continuous functional in SS. Linearity means that for any φ1S,φ2S\varphi_1 \in S , \varphi_2 \in S and any numbers c1,c2c_1, c_2, one has aT(c1φ1+c2φ2)=c1aT(φ1)+c2aT(φ2)\partial^a T ( c_1 \varphi_1 + c_2 \varphi_2) = c_1 \partial^a T ( \varphi_1) + c_2 \partial^a T (\varphi_2). Continuity means that, for any sequence φnφ\varphi_n \to \varphi in SS, the numerical sequence aT(φn)aT(φ)\partial^a T (\varphi_n) \to \partial^a T (\varphi). We prove both properties using the properties of linearity and continuity of TT itself.


Proof of linearity:

aT(c1φ1+c2φ2)=(1)aT(a(c1φ1+c2φ2))=(1)aT(c1aφ1+c2aφ2)=c1(1)aT(aφ1)+c2(1)aT(aφ2)=c1aT(φ1)+c2aT(φ2).\partial^a T \left( c_1 \varphi_1 + c_2 \varphi_2 \right) = (-1)^{|a|} T \left( \partial^a ( c_1 \varphi_1 + c_2 \varphi_2 ) \right) \\ = (-1)^{|a|} T \left( c_1 \partial^a \varphi_1 + c_2 \partial^a \varphi_2 \right) \\ = c_1 (-1)^{|a|} T \left( \partial^a \varphi_1 \right) + c_2 (-1)^{|a|} T \left( \partial^a \varphi_2 \right) \\ = c_1 \partial^a T (\varphi_1) + c_2 \partial^a T (\varphi_2) \, .


Proof of continuity:

For any sequence φnφ\varphi_n \to \varphi in SS, and for any multi-index aa, we have aφnaφ\partial^a \varphi_n \to \partial^a \varphi in SS. Then

aT(φn)=(1)aT(aφn)(1)aT(aφ)=aT(φ).\partial^a T (\varphi_n) = (-1)^{|a|} T \left( \partial^a \varphi_n \right) \to (-1)^{|a|} T \left( \partial^a \varphi \right) \\ = \partial^a T (\varphi) \, .


Both defining properties are proved. Therefore, aT\partial^a T is a tempered distribution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS