prove ||Ax|| < ||A|| ||x||
Solution
Let us suppose that
∣∣Ax∣∣>∣∣A∣∣∣∣x∣∣||Ax|| > ||A|| ||x||∣∣Ax∣∣>∣∣A∣∣∣∣x∣∣
⇒∣∣Ax∣∣∣∣x∣∣>∣∣A∣∣\Rightarrow\frac{||Ax||}{||x||} > ||A||⇒∣∣x∣∣∣∣Ax∣∣>∣∣A∣∣
⇒∣Ax∣∣x∣∣∣>∣∣A∣∣\Rightarrow|A\frac{x}{||x||}| > ||A||⇒∣A∣∣x∣∣x∣>∣∣A∣∣
Since x∣∣x∣∣∣\frac{x}{||x||}|∣∣x∣∣x∣ is a unit vector, therefore, from above we can write,
⇒∣∣A∣∣>∣∣A∣∣\Rightarrow ||A|| > ||A||⇒∣∣A∣∣>∣∣A∣∣ which constradicts
Hence
∣∣Ax∣∣<∣∣A∣∣∣∣x∣∣||Ax|| < ||A|| ||x||∣∣Ax∣∣<∣∣A∣∣∣∣x∣∣
Proved
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments