Let X and Y be normed spaces, T∈B(X,Y) and (xn) a sequence in X. If xn→x0, show that Txn→Tx0.
1
Expert's answer
2021-09-28T01:17:42-0400
ANSWER
Since B(X,Y) is a space of linear bounded operators in which norma can be given ∥T∥=sup{∥Tx∥Y∣x∈X,∥x∥X=1}, then for x non equal to zero ∥∥T(∥x∥x)∥∥Y≤∥T∥B({,Y) . The mapping T is a linear operator , so T(∥x∥x)=∥x∥1Tx . Therefore, for all x∈X the inequality
. . ∥Tx∥Y≤∥T∥⋅∥x∥X (1)
is true.
T(xn−x0)=Txn−Tx0 , ∥Txn−Tx0∥Y=∥T(xn−x0)∥Y . From (1) it follows
∥T(xn−x0)∥Y≤∥T∥⋅∥xn−x0∥X or
0≤∥Txn−Tx0∥Y≤∥T∥⋅∥xn−x0∥X (2)
By definition: xn→x0⇔∥xn−x0∥X→0 .
By the Sandwich Theorem from (2) it follows ∥Txn−Tx0∥Y→0or Txn→Tx0 .
Comments