Question #241911

Let X and Y be normed spaces, T∈B(X,Y) and (xn) a sequence in X. If xnx0, show that TxnTx0.

1
Expert's answer
2021-09-28T01:17:42-0400

ANSWER

Since B(X,Y)B(X,Y) is a space of linear bounded operators in which norma can be given T=sup{TxYxX, xX=1},\left\| T \right\| =sup\left\{ { \left\| Tx \right\| }_{ Y } \right| x\in X,\ { \left\| x \right\| }_{ X }=1\} \quad , then for xx non equal to zero T(xx)Y TB({,Y){ \left\| T\left( \frac { x }{ \left\| x \right\| } \right) \right\| }_{ Y }\le \ { \left\| T \right\| }_{ B(\{ ,Y) } . The mapping TT is a linear operator , so T(xx)=1xTxT\left( \frac { x }{ \left\| x \right\| } \right) =\frac { 1 }{ \left\| x \right\| } Tx . Therefore, for all xXx\in X the inequality

. . TxYTxX{ \left\| Tx \right\| }_{ Y }\le \left\| T \right\| \cdot { \left\| x \right\| }_{ X } (1)

is true.

T(xnx0 )=TxnTx0T\left( { x }_{ n }-{x}_0\ \right) =T{ x }_{ n }-T{x}_0 , TxnTx0Y=T(xnx0 )Y{ \left\| T{ x }_{ n }-T{x}_0 \right\| }_{ Y }={ \left\| T\left( { x }_{ n }-{x}_0\ \right) \right\| }_{ Y } . From (1) it follows

T(xnx0 )YTxnx0X{ \left\| T\left( { x }_{ n }-{ x }_{ 0 }\ \right) \right\| }_{ Y }\le \left\| T \right\| \cdot { \left\| { x }_{ n }-{ { x }_{ 0 } } \right\| }_{ X } or

0TxnTx0YTxnx0X0\le { \left\| T{ x }_{ n }-T{ x }_{ 0 } \right\| }_{ Y }\le \left\| T \right\| \cdot { \left\| { x }_{ n }-{ { x }_{ 0 } } \right\| }_{ X } (2)

By definition: xnx0  xnx0X0{ x }_{ n }\rightarrow { { x }_{ 0 } }\ \Leftrightarrow \ { \left\| { x }_{ n }-{ { x }_{ 0 } } \right\| }_{ X }\rightarrow 0 .

By the Sandwich Theorem from (2) it follows TxnTx0Y0{ \left\| T{ x }_{ n }-T{ x }_{ 0 } \right\| }_{ Y }\rightarrow 0\quador TxnTx0T{ x }_{ n }\rightarrow T{ { x }_{ 0 } } .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS