Show that f(x)=2/x+1 is indected
f(x)=2x+1f(x)=\frac{2}{x+1}f(x)=x+12
y′=−2(x+1)2y'=-\frac{2}{(x+1)^2}y′=−(x+1)22
y′′=4(x+1)3y''=\frac{4}{(x+1)^3}y′′=(x+1)34
For x∈(−∞,−1)x\isin (-\infin,-1)x∈(−∞,−1) : y′′<0 ⟹ f(x)y''<0\implies f(x)y′′<0⟹f(x) is concave downward.
For x∈(−1,∞)x\isin (-1,\infin)x∈(−1,∞) : y′′>0 ⟹ f(x)y''>0\implies f(x)y′′>0⟹f(x) is concave upward.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments