for n∈N:p(n)=−1,q(n)=cn \in \N : p(n) = -1, q(n) = cn∈N:p(n)=−1,q(n)=c (can be any function, except 0, by condition)
p(n+12)=0,q(n+12)=1p(n+\frac{1}{2}) = 0, q(n+\frac{1}{2}) = 1p(n+21)=0,q(n+21)=1
for x∈R:p(x)=0,q(x)=xmod 1x \in \R : p(x) = 0, q(x) = x \mod 1x∈R:p(x)=0,q(x)=xmod1
where xmod 1=x%1=x−⌊x⌋x \mod 1 = x \% 1 = x - \lfloor x \rfloorxmod1=x%1=x−⌊x⌋in another words it is remainder of division by 1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments