Question #109043

prove that

||u||>0 for u<>0


1
Expert's answer
2020-04-16T18:41:37-0400

u=(u,u)||u||=\sqrt{(u,u)}

For scalar u;

(u,u)=u2(u,u)=u^2

For vector u;

(u,u)=u.u(u,u)=u.u

For complex u;

If u=(u1,u2,...,un)u=(u_1,u_2,...,u_n)

(u,u)=uiuiˉ(u,u)=u_i\bar{u_i}


For scalar u if u<>0u<>0 ;

Case I u<0u<0

u=xu=-x

u=(x)(x)=x2=x>0||u||=\sqrt{(-x)(-x)}=\sqrt{x^2}=x>0

Case II u>0u>0

u=xu=x

u=x.x=x2=x>0||u||=\sqrt{x.x}=\sqrt{x^2}=x>0

So,u>0||u||>0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS