prove that
||u||>0 for u<>0
∣∣u∣∣=(u,u)||u||=\sqrt{(u,u)}∣∣u∣∣=(u,u)
For scalar u;
(u,u)=u2(u,u)=u^2(u,u)=u2
For vector u;
(u,u)=u.u(u,u)=u.u(u,u)=u.u
For complex u;
If u=(u1,u2,...,un)u=(u_1,u_2,...,u_n)u=(u1,u2,...,un)
(u,u)=uiuiˉ(u,u)=u_i\bar{u_i}(u,u)=uiuiˉ
For scalar u if u<>0u<>0u<>0 ;
Case I u<0u<0u<0
u=−xu=-xu=−x
∣∣u∣∣=(−x)(−x)=x2=x>0||u||=\sqrt{(-x)(-x)}=\sqrt{x^2}=x>0∣∣u∣∣=(−x)(−x)=x2=x>0
Case II u>0u>0u>0
u=xu=xu=x
∣∣u∣∣=x.x=x2=x>0||u||=\sqrt{x.x}=\sqrt{x^2}=x>0∣∣u∣∣=x.x=x2=x>0
So,∣∣u∣∣>0||u||>0∣∣u∣∣>0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments