The continuous compounding rate is 13,974% per year. The equivalent nominal rate, compounded quarterly, is
Solution
Let us consider, the equivalent nominal rate is ""x"", then the future value is
"A = P{\\left( {1 + \\frac{x}{n}} \\right)^{nt}}\\"
But for the continuous compounding, we have
"A = P \\cdot {e^{rt}}"
Therefore,
"P \\cdot {e^{rt}} = P{\\left( {1 + \\frac{r}{n}} \\right)^{nt}}\\\\"
"{\\left( {{e^r}} \\right)^t} = {\\left( {1 + \\frac{r}{n}} \\right)^{nt}}\\\\"
"{e^r} = {\\left( {1 + \\frac{r}{n}} \\right)^n}\\\\"
"{e^{0.13974}} = {\\left( {1 + \\frac{x}{4}} \\right)^4}\\\\"
"1 + \\frac{x}{4} = {\\left( {{e^{0.13974}}} \\right)^{{\\textstyle{1 \\over 4}}}}\\\\"
"\\frac{x}{4} = {\\left( {{e^{0.13974}}} \\right)^{{\\textstyle{1 \\over 4}}}} - 1\\\\"
"x = 4 \\cdot \\left[ {{{\\left( {{e^{0.13974}}} \\right)}^{{\\textstyle{1 \\over 4}}}} - 1} \\right]\\\\"
"x = 0.1422095828"
Hence the nominal rate is "14.221 \\%"
Comments
Leave a comment