If P20,000 will accumulate to P45,758.55 in 4 years, what is the interest rate compounded semi-annually?
A=P(1+r100)nA=P(1+\frac {r} {100}) ^nA=P(1+100r)n
45,758.55=20,000(1+r100)845,758.55=20,000(1+\frac {r} {100}) ^845,758.55=20,000(1+100r)8
45,758.5520,000=(1+r100)8\frac {45,758.55} {20,000} =(1+\frac {r} {100}) ^820,00045,758.55=(1+100r)8
2.2879=(1+r100)82.2879 =(1+\frac {r} {100}) ^82.2879=(1+100r)8
2.28798=(1+r100)88\sqrt[8] {2.2879} =\sqrt[8] {(1+\frac {r} {100}) ^8}82.2879=8(1+100r)8
1.109=1+r1001.109=1+\frac {r} {100}1.109=1+100r
0.109=r1000.109=\frac {r} {100}0.109=100r
r=10.9%×2r=10.9\%×2r=10.9%×2
r=21.8%
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment