Solution:
j4=7%
i = 7/4 % = 1.75% p.a = 0.0175
PV of perpetuity =Interest rate or yieldAmount of continuous cash payment
=0.0175$1=$5771
PV of annuity =P[r1−(1+r)−n]
Given, P=$X,r=0.0175,n=10
So, PV of annuity =X[0.01751−(1+0.0175)−10]=9.10122X
Now, 9.10122X=5771
⇒X=$6.278
Now, P=$2.5,n=?
PV of annuity =P[r1−(1+r)−n]
PV=$5771
5771=2.5[0.01751−(1+0.0175)−n]⇒0.4=1−(1+0.0175)−n⇒(1.0175)−n=0.6⇒−nlog1.0175=log0.6⇒n=29.44≈30
Now, for n=30,
PV=2.5[0.01751−(1+0.0175)−30]=57.964
Final payment will be =57.964−5771=$0.823
Comments