BeachWear Inc. manufactures beach sandals. Their expense and revenue functions are E=-300p + 32,000 and R= -275p^2 + 6,500p . Determine the maximum profit
to the nearest cent.
a. $10,036.36 b. $6764.45 c. $6409.09 d. $2945.45
Given,
Expense function:
"E=\u2212300p+32,000"
Revenue function:
"R=\u2212275p^2+6500p\\\\\nProfit(\u03c0)=R\u2212E\\\\\u03c0=\u2212275p^2+6,500p\u2212(\u2212300p+32,000)\\\\\u03c0=\u2212275p^2+6,500p+300p\u221232,000\\\\\u03c0=\u2212275p^2+6,800p\u221232,000"
To maximize the profit function let us derivate the function with
respect to p
"\\frac{d\u03c0}{dp}=\u22122\u00d7275p+6,800\\\\Set,\\\\ \\frac{d\u03c0}{dp}=0\\\\\u22122\u00d7275p+6,800=0\\\\6800=2\u00d7275p\\\\p=\\frac{6800}{550}\\\\p=12.3636"
To check whether the p=12.3636 will give maximum profit or not let us find
the second−order derivative
"\\frac{d^2\u03c0}{d\u03c0^2}=\u22122\u00d7275\\\\\\frac{d^2\u03c0}{d\u03c0^2}=\u2212550<0"
Since the value of second−order derivative is less than zero p=12.3636 will
give maximum profit
At p=12.3636 the profit will be maximum.
At p=12.3636 the value of revenue will be a sgiven below
"R=\u2212275\u00d7(12.3636)^2+6,500\u00d712.3636\\\\R=\u221242,036.1164+8036.34\\\\R=38,327.2836"
At p=12.3636 the value of expense will be a sgiven below
"E=\u2212300\u00d7\u00d712.3636+32,000\\\\E=\u22123,709.08+32,000\\\\E=\\$28,290.92\\\\So,\\\\Profit=R\u2212E\\\\Profit=38,327.2836\u221228,290.92\\\\Profit=\\$10,036.36"
The correct option is A.
Comments
Leave a comment