Present value of annuity "= annuity \u00d7\\frac{( 1 - (1\/( 1+ rate)^{no\\space of \\space periods} )}{rate}"
Monthly Payment = 1700
Time = 6 months
Discount rate = 8%
Monthly rate = annual rate ÷12
"= \\frac{8\\%}{ 12}\n\n = 0.6667\\%"
Present value of annuity will be
"1700 \u00d7\\frac{( 1 - ( 1\u00f7 (1+0.6667\\%)^6) }0.6667\\%\\\\\n\n = 1700 \u00d7 \\frac{( 1 - ( 1\u00f7(1.006667)^6) }{0.006667}\\\\\n\n = 1700 \u00d7\\frac{( 1 - ( 1\u00f71.04067 )) }{0.006667}\\\\\n\n = 1700 \u00d7\\frac{ ( 1 - 0.9609 ) }{ 0.006667}\\\\\n\n = 1700 \u00d7\\frac{ ( 0.039 ) }{ 0.006667}\\\\\n\n = \\$9,966.17"
Comments
Leave a comment