Question #238872
Calculate the present value of R1 700 received at the end of each month for 6 successive months using a discount rate of 8%
1
Expert's answer
2021-09-21T09:55:34-0400

Present value of annuity =annuity×(1(1/(1+rate)no of periods)rate= annuity ×\frac{( 1 - (1/( 1+ rate)^{no\space of \space periods} )}{rate}


Monthly Payment = 1700

Time = 6 months

Discount rate = 8%

Monthly rate = annual rate ÷12

           =8%12=0.6667%= \frac{8\%}{ 12} = 0.6667\%


Present value of annuity will be

1700×(1(1÷(1+0.6667%)6)0.6667%=1700×(1(1÷(1.006667)6)0.006667=1700×(1(1÷1.04067))0.006667=1700×(10.9609)0.006667=1700×(0.039)0.006667=$9,966.171700 ×\frac{( 1 - ( 1÷ (1+0.6667\%)^6) }0.6667\%\\ = 1700 × \frac{( 1 - ( 1÷(1.006667)^6) }{0.006667}\\ = 1700 ×\frac{( 1 - ( 1÷1.04067 )) }{0.006667}\\ = 1700 ×\frac{ ( 1 - 0.9609 ) }{ 0.006667}\\ = 1700 ×\frac{ ( 0.039 ) }{ 0.006667}\\ = \$9,966.17


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS