The price S(u), 0 u t, of the share is driven by a geometric Brownian motion: S(u) = Seμu+σW(u). A proportional dividend on this share is paid continuously at rate q > 0 and is reinvested in the share. The continuously compounded interest rate is r. Compute the no-arbitrage price of a derivative with expiration time t and payoff function
R(t) = [S(t/3)S(2t/3)S(t)]1/3 .
Consider the Brownian motion given by
"S(u)=Se^{\u03bcu+\u03c3W(u) }" "0\u2264u\u2264t \u2026\u2026(a)"
Payoff function is given by
"R(t)=[S(\\frac{t}{3})S(\\frac{2t}{3})S(t)^{\\frac{1}{3}} \u2026\u2026(b)"
where t is the expiration time.
For this first find the value of "S \\space at \\space u=0,t,(\\frac{t}{3}),(\\frac{2t}{3})"
"At \\space u=0"
equation(a) becomes
"S(0)=Se^{0+\u03c3W(0)}"
"S(0)=Se^{\u03c3W(0) } \u2026\u2026(c)"
at
u=t
"S(t)=Se^{\u03bct+\u03c3W(t) } \u2026\u2026(d)"
"at u=\\frac{t}{3}"
"S(\\frac{t}{3})=Se^{\u03bc(\\frac{t}{3})+\u03c3W(\\frac{t}{3}) } \u2026\u2026(e)"
"at u=\\frac{2t}{3}"
"S(\\frac{2t}{3})=Se^{\u03bc(\\frac{2t}{3})+\u03c3W(\\frac{2t}{3}) } \u2026\u2026(f)"
Put the values from equation(c) ,equation(d) ,equation(e) and equation(f)in equation (b)
"R(t)=[S(\\frac{t}{3})S(\\frac{2t}{3})S(t)]^{\\frac{1}{3}}"
"R(t) =[(Se^{\u03bc(\\frac{t}{3})+\u03c3W(\\frac{t}{3})})(Se^{\u03bc(\\frac{2t}{3})+\u03c3W(\\frac{2t}{3})})(Se^{\u03bct+\u03c3W(t)})]^\\frac{1}{3}"
"=[(S^{3}e^{\u03bc(\\frac{t}{3})+\u03c3W(\\frac{t}{3})})(e^{\u03bc(\\frac{2t}{3})+\u03c3W(\\frac{2t}{3})})(e^{\u03bct+\u03c3W(t)})]^\\frac{1}{3}"
"=S[(e^{\u03bc(\\frac{t}{3})+\u03c3W(\\frac{t}{3})})(e^{\u03bc(\\frac{2t}{3})+\u03c3W(\\frac{2t}{3})})(e^{\u03bct+\u03c3W(t)})]^\\frac{1}{3}"
"=S[ e^{\u03bc}(\\frac{t}{3}+\\frac{2t}{3}+t)e\u03c3W(\\frac{t}{3}+\\frac{2t}{3}+t) ]^{\\frac{1}{3}}"
"=S[e^{\u03bc(2t)}e^{\u03c3W(2t)}]^\\frac{1}{3}"
"R(t)=S[e^{\u03bc(2t)+\u03c3W(2t)}]^\\frac{1}{3 } \u2026\u2026(g)"
Now we find no-arbitrage price of a derivative .
differentiate equation(g) with respect to t.
"R'(t)=\\frac{S}{3}[e^{\u03bc(2t)+\u03c3W(2t)}]^{\u2212\\frac23}(e^{\u03bc(2t)+\u03c3W(2t})(2\u03bc+2\u03c3W)"
"=\\frac{S}{3}[e^{\u03bc(2t)+\u03c3W(2t})]^\\frac{1}{3} (2\u03bc+2\u03c3W)"
"R'(t)=\\frac{2S}{3}[e^{\u03bc(2t)+\u03c3W(2t)}]^\\frac{1}{3} (\u03bc+\u03c3W)"
Comments
Leave a comment