Question #187906

The price S(u), 0 􏰃 u 􏰃 t, of the share is driven by a geometric Brownian motion: S(u) = Seμu+σW(u). A proportional dividend on this share is paid continuously at rate q > 0 and is reinvested in the share. The continuously compounded interest rate is r. Compute the no-arbitrage price of a derivative with expiration time t and payoff function

R(t) = [S(t/3)S(2t/3)S(t)]1/3 .



1
Expert's answer
2021-05-11T13:57:14-0400

Consider the Brownian motion given by


S(u)=Seμu+σW(u)S(u)=Se^{μu+σW(u) } 0ut(a)0≤u≤t ……(a)

Payoff function is given by

R(t)=[S(t3)S(2t3)S(t)13(b)R(t)=[S(\frac{t}{3})S(\frac{2t}{3})S(t)^{\frac{1}{3}} ……(b)

where t is the expiration time.

For this first find the value of S at u=0,t,(t3),(2t3)S \space at \space u=0,t,(\frac{t}{3}),(\frac{2t}{3})

At u=0At \space u=0

equation(a) becomes

S(0)=Se0+σW(0)S(0)=Se^{0+σW(0)}

S(0)=SeσW(0)(c)S(0)=Se^{σW(0) } ……(c)

at

 u=t

S(t)=Seμt+σW(t)(d)S(t)=Se^{μt+σW(t) } ……(d)

atu=t3at u=\frac{t}{3}

S(t3)=Seμ(t3)+σW(t3)(e)S(\frac{t}{3})=Se^{μ(\frac{t}{3})+σW(\frac{t}{3}) } ……(e)

atu=2t3at u=\frac{2t}{3}

S(2t3)=Seμ(2t3)+σW(2t3)(f)S(\frac{2t}{3})=Se^{μ(\frac{2t}{3})+σW(\frac{2t}{3}) } ……(f)

Put the values from equation(c) ,equation(d) ,equation(e) and equation(f)in equation (b)

R(t)=[S(t3)S(2t3)S(t)]13R(t)=[S(\frac{t}{3})S(\frac{2t}{3})S(t)]^{\frac{1}{3}}


R(t)=[(Seμ(t3)+σW(t3))(Seμ(2t3)+σW(2t3))(Seμt+σW(t))]13R(t) =[(Se^{μ(\frac{t}{3})+σW(\frac{t}{3})})(Se^{μ(\frac{2t}{3})+σW(\frac{2t}{3})})(Se^{μt+σW(t)})]^\frac{1}{3}

=[(S3eμ(t3)+σW(t3))(eμ(2t3)+σW(2t3))(eμt+σW(t))]13=[(S^{3}e^{μ(\frac{t}{3})+σW(\frac{t}{3})})(e^{μ(\frac{2t}{3})+σW(\frac{2t}{3})})(e^{μt+σW(t)})]^\frac{1}{3}

=S[(eμ(t3)+σW(t3))(eμ(2t3)+σW(2t3))(eμt+σW(t))]13=S[(e^{μ(\frac{t}{3})+σW(\frac{t}{3})})(e^{μ(\frac{2t}{3})+σW(\frac{2t}{3})})(e^{μt+σW(t)})]^\frac{1}{3}

=S[eμ(t3+2t3+t)eσW(t3+2t3+t)]13=S[ e^{μ}(\frac{t}{3}+\frac{2t}{3}+t)eσW(\frac{t}{3}+\frac{2t}{3}+t) ]^{\frac{1}{3}}

=S[eμ(2t)eσW(2t)]13=S[e^{μ(2t)}e^{σW(2t)}]^\frac{1}{3}

R(t)=S[eμ(2t)+σW(2t)]13(g)R(t)=S[e^{μ(2t)+σW(2t)}]^\frac{1}{3 } ……(g)


Now we find no-arbitrage price of a derivative .

differentiate equation(g) with respect to t.

R(t)=S3[eμ(2t)+σW(2t)]23(eμ(2t)+σW(2t)(2μ+2σW)R'(t)=\frac{S}{3}[e^{μ(2t)+σW(2t)}]^{−\frac23}(e^{μ(2t)+σW(2t})(2μ+2σW)

=S3[eμ(2t)+σW(2t)]13(2μ+2σW)=\frac{S}{3}[e^{μ(2t)+σW(2t})]^\frac{1}{3} (2μ+2σW)


R(t)=2S3[eμ(2t)+σW(2t)]13(μ+σW)R'(t)=\frac{2S}{3}[e^{μ(2t)+σW(2t)}]^\frac{1}{3} (μ+σW)

                              


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS