Question #179189

1. Project A requires an initial outlay of K2 000 but will return K4 000 at the end of 

each of years 2, 3 and 4 whereas project B requires an initial outlay of K1 400 but 

will return K3 500 at the end of years 1, 2, 3 and 4.

(i) Calculate the NPV of each project if the discount rate is 5% compounded 

annually. On the basis of this, which project would you invest in?

(ii) Estimate the IRR for each of these projects. On the basis of the IRR which 

project would you prefer?


2. A project requiring an initial outlay of K15 000 is guaranteed to produce a return of 

K20000 in three years` time. Use the

(a) net present value

(b) internal rate of return

To decide whether this is worthwhile if the capital could be invested 

elsewhere at 15 % compounded annually.


1
Expert's answer
2021-04-15T07:26:15-0400

(1)

(I)PV=FV(1+r)nPV=\frac {FV}{(1+r)^{n}}

PV=present value

FV=future value

r=interest rate in decimal

n=number of years

2nd year PV=40001.052=3628.117914=\frac{4000}{1.05^{2}}=3628.117914


3rd year PV=40001.053=3455.350394=\frac{4000}{1.05^{3}}=3455.350394


4rth year PV=40001.054=3290.809899=\frac{4000}{1.05^{4}}=3290.809899


PV=3628.117914+3455.350394+3290.809899=10374.27785=3628.117914 +3455.350394+3290.809899=10374.27785


NPV=10374.277852000=8374.2777853=10374.27785-2000=8374.2777853



2nd year PV=35001.05=3333.333333=\frac{3500}{1.05}=3333.333333


2nd year PV=35001.052=3174.603175=\frac{3500}{1.05^{2}}=3174.603175


3rd year PV=35001.053=3023.431595=\frac{3500}{1.05^{3}}=3023.431595


4th year PV=35001.054=2879.458662=\frac{3500}{1.05^{4}}=2879.458662


PV=3333.333333+3333+3174.603175+3023.431595+2879.458662=12410.82676=3333.333333+3333+3174.603175+3023.431595+2879.458662=12410.82676


NPV=12410.826761400=1010.82676=12410.82676-1400=1010.82676

project B


(II)0=NPV=Cn(1+r)n0=NPV=\frac {Cn}{(1+r)^{n}}

Cn=cash flow

n=total number of periods

r=internal rate of return

2000+3628.12(1+r)2+3455.35(1+r)3+3290.81(1+r)4=80.888-2000+\frac{3628.12}{(1+r)^{2}}+\frac{3455.35}{(1+r)^{3}}+\frac{3290.81}{(1+r)^{4}}=80.888 %


14000+3333.33(1+r)+3174.60(1+r)2+3023.43(1+r)3+2875.46(1+r)4=231.715-14000+\frac{3333.33}{(1+r)}+\frac{3174.60}{(1+r)^{2}}+\frac{3023.43}{(1+r)^{3}}+\frac{2875.46}{(1+r)^{4}}=231.715 %

Project A


(2)

(a)1st year PV=200001.15=17391.30430=\frac{20000}{1.15}=17391.30430


2nd year PV=200001.152=15122.87335=\frac{20000}{1.15^{2}}=15122.87335


3rd year PV=200001.153=13150.3245=\frac{20000}{1.15^{3}}=13150.3245

PV=17391.30430+15122.87335+13150.3245=45664.5022=17391.30430+15122.87335+13150.3245=45664.5022


NPV=45664.502215000=30664.5022=45664.5022-15000=30664.5022

the project is worthwhile


(b)

1500+17391.30(1+r)+15122.87(1+r)2+13150(1+r)3=92.154-1500+\frac{17391.30}{(1+r)}+\frac{15122.87}{(1+r)^{2}}+\frac{13150}{(1+r)^{3}}=92.154 %

the project is worthwhile


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS