Question #156988

a) Calculate the accumulated value after 6 month of an investment of kshs 1,000 at time t=0 at the following rate of interest

i) A force of interest of 0.05%

ii) A rate of interest of 5% per annum

convertible monthly

iii) An effective rate of interest of 5% per

annum

b) Given an investment of kshs1,000,000. Find the accumulation after 5years using:

I) simple discount of 8% per annum

II) compound discount of 8% per annum

III) compound interest of 8% per annum


1
Expert's answer
2021-01-25T03:53:36-0500

a)

i) find the formula:

PV×ey×δ=FVPV\times e^{y\timesδ} = FV

PV=1000

δ=0.0005

y=0.5

1000×e0.5×0.0005=1000.251000\times e^{0.5\times0.0005} = 1000.25

ii)find the formula:

FV=PV(1+i)FV = PV(1 + i)^ⁿ

PV=1000

i=0.00417

i=iy12=0.0512=0.00417i=\frac{iy}{12}=\frac{0.05}{12}=0.00417

FV=1000(1+0.00417)6=1025.28FV = 1000(1 + 0.00417)^6=1025.28

iii)let's convert the effective bid to the nominal one

find using the formula:

re=(1+in)n1re=(1+\frac{i}{n})^n-1

0.05=(1+i12)1210.05=(1+\frac{i}{12})^{12}-1

i=0.0512

FV=PV(1+i)=1000(1+0.0512)6=1349.31FV = PV(1 + i)^ⁿ=1000(1+0.0512)^6=1349.31

b)

i) find the formula:

FV=PV(1r×n)FV=\frac{PV}{(1-r\times n)}

PV=1000 000

r=0.08

n=5

FV=1000000(10.8×5)=1041666.67FV=\frac{1 000 000}{(1-0.8\times 5)}=1 041 666.67

ii)find the formula:

FV=PV(1r)nFV=\frac{PV}{(1-r)^n}

PV= 1000 000

r=0.08

n=5

FV=1000000(10.08)5=1517262.99FV=\frac{1 000 000}{(1-0.08)^5}=1 517 262.99

iii)find the formula:

FV=PV(1+i)FV = PV(1 + i)^ⁿ

PV= 1000 000

i=0.08

n=5

FV=1000000(1+0.08)5=1469328.08FV = 1 000 000(1 + 0.08)^5=1 469 328.08

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS