PV=2500
at the beginning of the year:
PV=C[1−(1+r)−nr]×(1+r)PV=C[\frac{1-(1+r)^{-n}}{r}]\times(1+r)PV=C[r1−(1+r)−n]×(1+r)
2500=C[1−(1+0.0776)−60.0776]×(1+0.0776)2500=C[\frac{1-(1+0.0776)^{-6}}{0.0776}]\times(1+0.0776)2500=C[0.07761−(1+0.0776)−6]×(1+0.0776)
C=25005.01806503=498.2C=\frac{2500}{5.01806503}=498.2C=5.018065032500=498.2
at the end of each year:
PV=C[1−(1+r)−nr]PV=C[\frac{1-(1+r)^{-n}}{r}]PV=C[r1−(1+r)−n]
2500=C[1−(1+0.0776)−60.0776]2500=C[\frac{1-(1+0.0776)^{-6}}{0.0776}]2500=C[0.07761−(1+0.0776)−6]
C=25004.65673159=536.86C=\frac{2500}{4.65673159}=536.86C=4.656731592500=536.86
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments