Equation to match assets and liabilities
100 = (1.01)x +(0.02)y+(0.2)z
100 = (1.02)y + (1.2)z
Solving the equations:
Solving for z
100 = (1.02)y + (1.2)z
100 = (1.01)x +(0.02)y+(0.2)z
Solving for y
z = "\\frac{(100 \u2013 1.02y)}{1.2}"
z = 83.33333 – 0.85y
100 = (1.01)x +(0.02)y+(0.2)( 83.33333 – 0.85y)
100 = 1.01x +0.02y+16.66667– 0.17y
Solving for x
83.33333 = 1.01x - 0.15y
1.01x = 83.33333 + 0.15y
x = 82.50825 + 0.148515y
Solving for y
x = 82.50825 + 0.148515y
0.148515y = x-82.50825
y = 6.733333x - 555.5556
z = 83.33333 – 0.85y
0.85y = 83.33333-z
y = 98.03922 - 1.176471z
Cost of combination
The total price of the bonds will be given by:
a) Bonds i) and ii) only.
C = "[82.50825 + 0.148515y]*1.01*1.07^{-1} + [98.03922 - 1.176471z]*0.02*1.075^{-2}"
C = "[82.50825 + 0.148515y]*0.943925 + [98.03922 - 1.176471z]*0.017226"
C = 79.57049 + 0.140187y - 0.020266z
Since z = 83.33333 – 0.85y
C = "79.57049 + 0.140187y - 0.020266*(83.33333 \u2013 0.85y)"
C = 79.57049 + 0.140187y - 1.688833 + 0.017226y
C = 77.88165 + 0.157413y
b) Bonds i) and iii) only.
C = "[82.50825 + 0.148515y]*1.01*1.07^{-1} + [83.33333 \u2013 0.85y]*0.2*1.0775^{-2}"
C = "[82.50825 + 0.148515y]*0.943925 + [83.33333 \u2013 0.85y]*0.172264"
C = 92.23698-0.00624y
(c) Combination that minimizes the cost of exact-matching portfolios
∆C = [Bonds i) and ii) only] – [Bonds i) and iii) only]
∆C = 77.88165 + 0.157413y – (92.23698-0.00624y)
∆C = -14.3553 + 0.163653y
∆C = [Bonds i) and iii) only] - [Bonds i) and ii) only]
∆C = [92.23698-0.00624y] – [77.88165 + 0.157413y]
∆C = 14.35533 -0.16365y
The total cost of Bonds i) and ii) is less more than that of the combination of Bonds i) and iii) since the cost difference (∆C = 14.35533 -0.16365y) obtained by [Bonds i) and iii) only] - [Bonds i) and ii) only] Is positive implying that combination of Bonds i) and iii) only is higher. Thus the combination that minimizes the cost of exact matching portfolios is that of Bonds i) and ii) only.
Comments
Leave a comment