(a) Future value of
(1) ordinary annuity (C) at 10%
"P=PMT\u00d7[((1+r)^n-1)\/r]"
where;
P= future value
PMT=Amount of each annuity
r=interest value
n=period
"P=2500\u00d7[((1+0.1)^5-1)\/0.1]"
"P=2500\u00d7[(1.1^5-1)\/0.1]"
"P=2500\u00d76.1051"
P=$15262.75
annuity due (D) at 10%
"P=PMT\u00d7[((1+r) \nn\n \u22121)\/r]\u00d7(1+r)"
where;
P= future value
PMT=Amount of each annuity
r=interest value
n=period
"P={2200\u00d7[((1+0.1)^5-1)\/0.1]}\u00d7(1+0.1)"
"P={2200\u00d7[(1.1^5-1)\/0.1]}\u00d7(1.1)"
P=$14774.34
(2)Future value of
ordinary annuity (C) at 20%
"P=2500\u00d7[((1+0.2)^5)-1)\/0.2]"
"P=2500\u00d77.4416"
P=$18604
annuity due (D) at 20%
"P=2200\u00d7[((1+0.2) \n5\n )\u22121)\/0.2]\u00d7(1+0.2)"
"P=2200\u00d7[(1.2^5-1)\/0.2]\u00d7(1.2)"
"P=2200\u00d77.4416\u00d7(1.2)"
P=$19645.82
b) Annuity with best future value.
(1) at 10% - annuity C with value of $15262.75
(2) at 20% - annuity D with value of $19645.82
(c)Future value using timeline.
(1) at 10%
(2)at 20%
Comments
Leave a comment