(a) Future value of
(1) ordinary annuity (C) at 10%
P=PMT×[((1+r)n−1)/r]
where;
P= future value
PMT=Amount of each annuity
r=interest value
n=period
P=2500×[((1+0.1)5−1)/0.1]
P=2500×[(1.15−1)/0.1]
P=2500×6.1051
P=$15262.75
annuity due (D) at 10%
P=PMT×[((1+r)n−1)/r]×(1+r)
where;
P= future value
PMT=Amount of each annuity
r=interest value
n=period
P=2200×[((1+0.1)5−1)/0.1]×(1+0.1)
P=2200×[(1.15−1)/0.1]×(1.1)
P=$14774.34
(2)Future value of
ordinary annuity (C) at 20%
P=2500×[((1+0.2)5)−1)/0.2]
P=2500×7.4416
P=$18604
annuity due (D) at 20%
P=2200×[((1+0.2)5)−1)/0.2]×(1+0.2)
P=2200×[(1.25−1)/0.2]×(1.2)
P=2200×7.4416×(1.2)
P=$19645.82
b) Annuity with best future value.
(1) at 10% - annuity C with value of $15262.75
(2) at 20% - annuity D with value of $19645.82
(c)Future value using timeline.
(1) at 10%
(2)at 20%
Comments