i. ρ12 = − and ρ is risk-free.
Rp = w1r1 + w2r2
Variance of the portfolio return
σ2p = w1σ21 + w2σ22 + 2w1w2σ12
i) ρ12 = − and ρ is risk-free.
Value of w1, w2
w1r1 = Rp - w2r2
w1 = Rp /r1 - w2r2/r1
w2 = Rp /r2 – w1r1/r2
ii) σ1 = σ2 and variance P is minimum.
σ = √(w1σ21 + w2σ22 + 2w1w2σ12)
σ2 = √[(w1σ21 + w2σ22 + 2w1w2σ12)]2
σ2 = w1σ21 + w2σ22 + 2w1w2σ12
w1σ21 + 2w1w2σ12 = σ2 - w2σ22
w1(σ21 + 2w2σ12) = σ2 - w2σ22
w1= (σ21- w2σ22)/ (σ21 + 2w2σ12)
w2= (σ22- w1σ22)/ (σ22 + 2w1σ12)
The answer is the same for different three situations because the portfolio with the two securities hence the minimum variance frontier (MVF) for the three different scenarios portrays a perfect negative correlation (ρ12 = −).
Comments
Leave a comment