"FV=PV\\times(1+\\frac{r}{n})^{nm}=50000\\times(1+\\frac{0.06}{4})^{20}=\\\\=50000\\times(1+0.015)^{20}=50 000 \\times1.346855=67342.75"
2. Find the term:
Since Steve transfers money from his account to RRIF, this turns out to be annuity:
Therefore, we apply the formula:
"S=R \\times \\frac{(1+i)^n-1}{i}"
Therefore, we apply the formula
"\\frac{S}{R}\\times i+1=(1+i)^n"
Let us take the natural logarithm of this equality
"n\\times \\ln(1+i)=\\ln(\\frac{S}{R}\\times i+1)"
"n=\\frac{\\ln(\\frac{S}{R}\\times i+1)}{\\ln(1+i)}"
"n=\\frac{\\ln(\\frac{67342.75}{2000}\\times0.00375+1)}{\\ln(1+0.00375)}"
"n=\\frac{\\ln(33.671375\\times0.00375+1)}{\\ln1.00375}"
"n=\\frac{0.1188}{0.00374}=31.76"
32 months
Comments
Leave a comment