Question #98477
Use properties of Boolean algebra to simplify the following Boolean expression (show-
ing all the steps):
(x + y
0
)(x
0 + y
0
)
0
1
Expert's answer
2019-11-13T11:55:58-0500

(x+y)(x+y)( x + \overline y) \overline{(\overline x +\overline y)}

we know,

A+B=A.B and A=A\overline {A+ B} = \overline A . \overline B \space and \space \overline{\overline A} = A

(x+y)(x+y)=(x+y)((xy))( x + \overline y) \overline{(\overline x +\overline y)} = ( x + \overline y) ( \overline{(\overline x} * \overline{\overline y}))

=(x+y)(xy)= (x + \overline y) ( x *y)

=x.x.y+xy.y=x.y+0=x.y= x . x . y + x y .\overline y = x . y + 0 = x. y

Since

(x.x=x and y.y=0)( x . x = x \space and \space y .\overline y = 0)

Answer :

(x+y)(x+y)=x.y( x + \overline y) \overline{(\overline x +\overline y)} = x. y


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS