"( x + \\overline y) \\overline{(\\overline x +\\overline y)}"
we know,
"\\overline {A+ B} = \\overline A . \\overline B \\space and \\space \\overline{\\overline A} = A""( x + \\overline y) \\overline{(\\overline x +\\overline y)} = ( x + \\overline y) ( \\overline{(\\overline x} * \\overline{\\overline y}))"
"= (x + \\overline y) ( x *y)"
"= x . x . y + x y .\\overline y = x . y + 0 = x. y"
Since
"( x . x = x \\space and \\space y .\\overline y = 0)"Answer :
"( x + \\overline y) \\overline{(\\overline x +\\overline y)} = x. y"
Comments
Leave a comment