Answer to Question #96376 in Discrete Mathematics for Amritpal Singh

Question #96376
Let f : A → B and let X,Y be subsets of the domain A. For any Z ⊆ A, define the image of Z under f to be the set f[Z] = {b ∈ B|∃z ∈ Z(f(z) = b)}.

a. Show that f[X ∪Y] = f[X]∪f[Y].

b. Give an example of a function f and subsets X,Y of its domain to show that it is not always true that f[X ∩Y] = f[X]∩f[Y].
1
Expert's answer
2019-10-14T10:10:16-0400

a)Since XXYX\subset X\cup Y and YXYY\subset X\cup Y, we have f[X]f[XY]f[X]\subset f[X\cup Y] and f[Y]f[XY]f[Y]\subset f[X\cup Y] , that is f[X]f[Y]f[XY]f[X]\cup f[Y]\subset f[X\cup Y] .

Now we prove that f[XY]f[X]f[Y]f[X\cup Y]\subset f[X]\cup f[Y] .

Indeed, if f[XY]=f[X\cup Y]=\varnothing, then f[XY]f[X]f[Y]f[X\cup Y]\subset f[X]\cup f[Y].

Else let uf[XY]u\in f[X\cup Y] , then there is vXYv\in X\cup Y such that u=f(v)u=f(v) . So if vXv\in X, then u=f(v)f[X]u=f(v)\in f[X] , and if vYv\in Y, then u=f(v)f[Y]u=f(v)\in f[Y] . In both cases we have uf[X]f[Y]u\in f[X]\cup f[Y] .

Therefore f[XY]f[X]f[Y]f[X\cup Y]\subset f[X]\cup f[Y] .

Since f[XY]f[X]f[Y]f[X\cup Y]\subset f[X]\cup f[Y] and f[X]f[Y]f[XY]f[X]\cup f[Y]\subset f[X\cup Y] , we have f[X]f[Y]=f[XY]f[X]\cup f[Y]= f[X\cup Y] .

b)Since XYXX\cap Y\subset X and XYYX\cap Y\subset Y , we have f[XY]f[X]f[X\cap Y]\subset f[X] and f[XY]f[Y]f[X\cap Y]\subset f[Y] , that is f[XY]f[X]f[Y]f[X\cap Y]\subset f[X]\cap f[Y] , but there are examples where f[XY]⊅f[X]f[Y]f[X\cap Y]\not\supset f[X]\cap f[Y] (Indeed, if af[X]f[Y]a\in f[X]\cap f[Y], then there are bXb\in X and cYc\in Y such that a=f(b)=f(c)a=f(b)=f(c). But it does not imply that there is dXYd\in X\cap Y such that a=f(d)a=f(d)). One of these examples is f ⁣:{1,2,3}{1,2}f\colon \{1,2,3\}\to\{1,2\}, where f(1)=f(3)=1f(1)=f(3)=1 and f(2)=2f(2)=2 . We have f[{2}]={2}f[\{2\}]=\{2\}, but f[{1,2}]f[{3,2}]={1,2}f[\{1,2\}]\cap f[\{3,2\}]=\{1,2\}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment