Question #94898
Show that 1n^3+2n+3n^2 is divided by 2 and 3 for all positive integers n
1
Expert's answer
2019-09-20T09:50:35-0400

Answer.  Define f(n)=1n3+2n+3n2f(n) = 1n^3+2n+3n^2. We try to factorize this polynomial. One obvious factor is nn, so f(n)=n(1n2+2+3n)f(n) = n(1n^2+2+3n). We factorize the factor of degree 22 by completing the square:


1n2+2+3n=(n+32)294+2=(n+32)2(12)21n^2+2+3n = \left(n+\frac{3}{2}\right)^2 - \frac{9}{4} +2 = \left(n+\frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2

=(n+3212)(n+32+12)=(n+1)(n+2).= \left(n +\frac{3}{2} -\frac{1}{2}\right) \left(n +\frac{3}{2} +\frac{1}{2}\right) = (n+1)(n+2).

Hence

f(n)=n(n+1)(n+2).f(n) = n (n+1) (n+2).

Let nn be a positive integer number. Division of nn by 33 gives an integer quotient qq and a remainder r{0,1,2}r\in \{0, 1, 2\} such that n=3q+rn = 3q+r. Now check all the possible values of rr.

  • If r=0r=0, then 33 divides n=3qn = 3q which is a factor of f(n)f(n).
  • If r=1r=1, then 33 divides n+2=(3q+1)+2=3(q+1)n+2 = (3q+1) +2 = 3(q+1) which is a factor of f(n)f(n).
  • If r=2r=2, then 33 divides n+1=(3q+2)+1=3(q+1)n+1 = (3q+2) +1 = 3(q+1) which is a factor of f(n)f(n).

Hence 33 divides f(n)f(n) in all cases.

Division of nn by 22 gives an integer quotient qq and a remainder r{0,1}r\in \{0, 1\} such that n=2q+rn = 2q+r.

  • If r=0r=0, then 22 divides n=2qn = 2q which is a factor of f(n)f(n).
  • If r=1r=1, then 22 divides n+1=(2q+1)+1=2(q+1)n+1 = (2q+1) +1 = 2(q+1) which is a factor of f(n)f(n).

Hence 22 divides f(n)f(n) in all cases.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS