Question #90135
Show that the following argument form is valid.

p --> q
q --> r

∴ p --> r
1
Expert's answer
2019-05-24T09:15:07-0400

We have to prove (p-->q) and (q-->r) implies (p-->r)

((pq)(qr))(pr)((p\to q)\land(q\to r))\to(p\to r)\equiv


using(ab)(¬ab)using(a\to b)\equiv(\neg a\lor b)

¬((pq)(qr))(pr)\equiv\neg((p\to q)\land(q\to r))\lor(p\to r)\equiv

using ¬(ab)(¬a¬b)using \ \neg(a\land b)\equiv(\neg a\lor \neg b)

(¬(pq)¬(qr))(pr)(\neg(p\to q)\lor\neg(q\to r))\lor(p\to r)\equiv

using(ab)(¬ab)using(a\to b)\equiv(\neg a\lor b)

¬(¬pq)¬(¬qr)(¬pr)\neg(\neg p\lor q)\lor\neg(\neg q\lor r)\lor(\neg p\lor r)\equiv

using¬(ab)(¬a¬b)using \neg(a\lor b)\equiv(\neg a\land \neg b)

(¬¬p¬q)(¬¬q¬r)(¬pr)(\neg\neg p\land \neg q)\lor(\neg\neg q\land\neg r)\lor(\neg p\lor r)\equiv

using¬¬aausing \neg\neg a\equiv a

(p¬q)(q¬r)¬pr( p\land \neg q)\lor( q\land\neg r)\lor\neg p\lor r\equiv

using commutative lawusing \ commutative \ law

(p¬q)¬p(q¬r)r( p\land \neg q)\lor\neg p\lor( q\land\neg r)\lor r\equiv

using\ associative\ law\

((p¬q)¬p)((q¬r)r)(( p\land \neg q)\lor\neg p)\lor(( q\land\neg r)\lor r)\equiv

using distributive lawusing\ distributive\ law

((p¬p)(¬q¬p))((qr)(¬rr))(( p\lor\neg p)\land (\neg q\lor\neg p))\lor(( q\lor r)\land(\neg r\lor r))\equiv

using a¬aTusing\ a\lor \neg a \equiv T

(T(¬q¬p))((qr)T)(T\land (\neg q\lor\neg p))\lor(( q\lor r)\land T)\equiv

using Taausing \ T\land a\equiv a

(¬q¬p)(qr)(\neg q\lor \neg p)\lor(q\lor r)\equiv

using associative lawusing\ associative\ law

(¬qq)(¬pr)(\neg q\lor q)\lor(\neg p\lor r)\equiv

using a¬aTusing\ a\lor \neg a \equiv T

T(¬pr)T\lor(\neg p\lor r)\equiv

using TaTusing\ T\lor a\equiv T

TT

Q.E.D.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS