We have to prove (p-->q) and (q-->r) implies (p-->r)
"((p\\to q)\\land(q\\to r))\\to(p\\to r)\\equiv""using(a\\to b)\\equiv(\\neg a\\lor b)"
"\\equiv\\neg((p\\to q)\\land(q\\to r))\\lor(p\\to r)\\equiv"
"using \\ \\neg(a\\land b)\\equiv(\\neg a\\lor \\neg b)"
"(\\neg(p\\to q)\\lor\\neg(q\\to r))\\lor(p\\to r)\\equiv"
"using(a\\to b)\\equiv(\\neg a\\lor b)"
"\\neg(\\neg p\\lor q)\\lor\\neg(\\neg q\\lor r)\\lor(\\neg p\\lor r)\\equiv"
"using \\neg(a\\lor b)\\equiv(\\neg a\\land \\neg b)"
"(\\neg\\neg p\\land \\neg q)\\lor(\\neg\\neg q\\land\\neg r)\\lor(\\neg p\\lor r)\\equiv"
"using \\neg\\neg a\\equiv a"
"( p\\land \\neg q)\\lor( q\\land\\neg r)\\lor\\neg p\\lor r\\equiv"
"using \\ commutative \\ law"
"( p\\land \\neg q)\\lor\\neg p\\lor( q\\land\\neg r)\\lor r\\equiv"
"using\\ associative\\ law\\"
"(( p\\land \\neg q)\\lor\\neg p)\\lor(( q\\land\\neg r)\\lor r)\\equiv"
"using\\ distributive\\ law"
"(( p\\lor\\neg p)\\land (\\neg q\\lor\\neg p))\\lor(( q\\lor r)\\land(\\neg r\\lor r))\\equiv"
"using\\ a\\lor \\neg a \\equiv T"
"(T\\land (\\neg q\\lor\\neg p))\\lor(( q\\lor r)\\land T)\\equiv"
"using \\ T\\land a\\equiv a"
"(\\neg q\\lor \\neg p)\\lor(q\\lor r)\\equiv"
"using\\ associative\\ law"
"(\\neg q\\lor q)\\lor(\\neg p\\lor r)\\equiv"
"using\\ a\\lor \\neg a \\equiv T"
"T\\lor(\\neg p\\lor r)\\equiv"
"using\\ T\\lor a\\equiv T"
"T"
Q.E.D.
Comments
Leave a comment