Simplify
1. p∧(p∧q)
2. ~ (~p∨q)
3. ~ (p⇒~q)
1. To simplify this statement we can use the associative law: "p \u2227 (q \u2227 r) \u2261 (p \u2227 q) \u2227 r" and the idempotent law: "p \u2227 p \u2261 p."
So we have:
"p\u2227(p\u2227q)\u2261(p\u2227p)\u2227q\u2261p\u2227q."
2. To simplify this statement we can use the De Morgan's Law: "\u00ac(p \u2228 q) \u2261 \u00acp \u2227 \u00acq" and the double negation law: "\u00ac\u00acp \u2261 p."
So we have:
"\\lnot (\\lnot p\u2228q)\u2261\\lnot \\lnot p\u2227 \\lnot q\u2261p\u2227 \\lnot q."
3. To simplify this statement we can use the implication law: "p \u2192 q \u2261 \\lnot p \u2228 q" and De Morgan's Law: "\\lnot (p \u2228 q) \u2261 \\lnot p \u2227 \\lnot q" and the double negation law: "\\lnot \\lnot p \u2261 p."
So we have:
"\\lnot (p\u21d2\\lnot q)\u2261\\lnot(\\lnot p \u2228 \\lnot q)\u2261\\lnot\\lnot p \\land \\lnot\\lnot q\u2261p \\land q."
Answer:
Comments
Leave a comment