Answer to Question #349982 in Discrete Mathematics for Reigne

Question #349982

Simplify



1. p∧(p∧q)



2. ~ (~p∨q)



3. ~ (p⇒~q)

1
Expert's answer
2022-06-14T11:24:49-0400

1. To simplify this statement we can use the associative law: p(qr)(pq)rp ∧ (q ∧ r) ≡ (p ∧ q) ∧ r and the idempotent law: ppp.p ∧ p ≡ p.

So we have:

p(pq)(pp)qpq.p∧(p∧q)≡(p∧p)∧q≡p∧q.


2. To simplify this statement we can use the De Morgan's Law: ¬(pq)¬p¬q¬(p ∨ q) ≡ ¬p ∧ ¬q and the double negation law: ¬¬pp.¬¬p ≡ p.

So we have:

¬(¬pq)¬¬p¬qp¬q.\lnot (\lnot p∨q)≡\lnot \lnot p∧ \lnot q≡p∧ \lnot q.


3. To simplify this statement we can use the implication law: pq¬pqp → q ≡ \lnot p ∨ q and De Morgan's Law: ¬(pq)¬p¬q\lnot (p ∨ q) ≡ \lnot p ∧ \lnot q and the double negation law: ¬¬pp.\lnot \lnot p ≡ p.

So we have:

¬(p¬q)¬(¬p¬q)¬¬p¬¬qpq.\lnot (p⇒\lnot q)≡\lnot(\lnot p ∨ \lnot q)≡\lnot\lnot p \land \lnot\lnot q≡p \land q.


Answer:

  1. p(pq)pq.p∧(p∧q)≡p∧q.
  2. ¬(¬pq)p¬q.\lnot (\lnot p∨q)≡p∧ \lnot q.
  3. ¬(p¬q)¬(¬p¬q)¬¬p¬¬qpq.\lnot (p⇒ \lnot q)≡\lnot(\lnot p ∨ \lnot q)≡\lnot\lnot p \land \lnot\lnot q≡p \land q.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment