Answer to Question #348330 in Discrete Mathematics for kai

Question #348330

Choose the best answer: ANTI SYMMETRIC, TRANSITIVE RELATION, SYMMETRIC RELATION, REFLEXIVE RELATION



1. {(3,5)(5,3) (2,4)(4,5)}



2. {(3,1)(1,3)}



3. {(3,1)(2,3)(5,6)(6,5)}



4. {(1,3)(5,3)(7,5)}



5. {(8,9)(9,7)(8,7)}



6. {(4,2)(2,4)}



7. {(1,5)(2,5)(3,5)}



8. {(5,5)(5,6)(6,5)(6,6)(6,7)(7,6) (7,7)}



9. {(6,5)(5,4)(6,4)}



10. {(7,6)(6,5)(7,5)}



11. {(3,1)(1,3)}



12. {(4,3)(3,5)(4,5)}



13. {(6,6)(6,5)(5,5)(5,4)(4,4)}



14. {(6,5)(7,6)(4,5)(5,4)}



15. {(3,3)(4,4)(4,5)(5,4)(5,5)}


1
Expert's answer
2022-06-06T15:00:08-0400

1. {(3,5)(5,3) (2,4)(4,5)}

We have "(2,4)\u2208R" but "(4,2)\\not\u2208R," thus "R" is not symmetric.

We have "(3,5)\u2208R, (5,3)\u2208R" but "3\\not=5," thus "R" is not antisymmetric.

Since "(3,5)\u2208R" and "(5,3)\u2208R," but "(3,3)\u2209R" the relation "R" is not transitive.

Since "(2,2),(3,3),(4,4), (5,5)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


2. {(3,1)(1,3)}

We have "(3,1)\u2208R, (1,3)\u2208R," thus "R" is symmetric.

We have "(3,1)\u2208R, (1,3)\u2208R" but "3\\not=1," thus "R" is not antisymmetric.

Since "(3,1)\u2208R" and "(1,3)\u2208R," but "(3,3)\u2209R" the relation "R" is not transitive.

Since "(1,1),(3,3)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


3. {(3,1)(2,3)(5,6)(6,5)}

We have "(3,1)\u2208R" but "(1,3)\\not\u2208R," thus "R" is not symmetric.

We have "(5,6)\u2208R, (6,5)\u2208R" but "5\\not=6," thus "R" is not antisymmetric.

Since "(2,3)\u2208R" and "(3,1)\u2208R," but "(2,1)\u2209R" the relation "R" is not transitive.

Since "(1,1),(2,2),(3,3),(5,5), (6,6)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


4. {(1,3)(5,3)(7,5)}

We have "(1,3)\u2208R" but "(3,1)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

Since "(7,5)\u2208R" and "(5,3)\u2208R," but "(7,3)\u2209R" the relation "R" is not transitive.

Since "(1,1),(3,3),(5,5), (7,7)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


5. {(8,9)(9,7)(8,7)}

We have "(8,9)\u2208R" but "(9,8)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

Since "(8,9)\u2208R" and "(9,7)\u2208R," and "(8,7)\\in R" the relation "R" is transitive.

Since "(7,7),(8,8),(9,9)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


6. {(4,2)(2,4)}

We have "(4,2)\u2208R, (2,4)\u2208R," thus "R" is symmetric.

We have "(2,4)\u2208R, (4,2)\u2208R" but "2\\not=4," thus "R" is not antisymmetric.

Since "(4,2)\u2208R" and "(2,4)\u2208R," but "(4,4)\u2209R" the relation "R" is not transitive.

Since "(2,2),(4,4)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


7. {(1,5)(2,5)(3,5)}

We have "(1,5)\u2208R" but "(5,1)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

The relation "R" is transitive.

Since "(1,1),(2,2),(3,3), (5,5)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


8. {(5,5)(5,6)(6,5)(6,6)(6,7)(7,6) (7,7)}

The relation "R" is symmetric.

We have "(5,6)\u2208R, (6,5)\u2208R" but "5\\not=6," thus "R" is not antisymmetric.

The relation "R" is transitive.

The relation "R" is reflexive.



9. {(6,5)(5,4)(6,4)}

We have "(5,4)\u2208R" but "(4,5)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

The relation "R" is transitive.

Since "(4,4),(5,5),(6,6), \u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


10. {(7,6)(6,5)(7,5)}

We have "(7,6)\u2208R" but "(6,7)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

The relation "R" is transitive.

Since "(5,5),(6,6),(7,7), \u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


11. {(3,1)(1,3)}

We have "(3,1)\u2208R, (1,3)\u2208R," thus "R" is symmetric.

We have "(1,3)\u2208R, (3,1)\u2208R" but "3\\not=1," thus "R" is not antisymmetric.

Since "(3,1)\u2208R" and "(1,3)\u2208R," but "(3,3)\u2209R" the relation "R" is not transitive.

Since "(1,1),(3,3)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


12. {(4,3)(3,5)(4,5)}

We have "(4,3)\u2208R" but "(3,4)\\not\u2208R," thus "R" is not symmetric.

There is no pair of elements "a" and "b" with "a \u2260 b" such that both"(a, b)" and "(b, a)" belong to the relation. Thus "R" is antisymmetric.

The relation "R" is transitive.

Since "(3,3),(4,4), (5,5)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


13. {(6,6)(6,5)(5,5)(5,4)(4,4)}

We have "(6,5)\u2208R," but "(5,6)\\not\u2208R," thus "R" is not symmetric.

The relation "R" is antisymmetric.

Since "(6,5)\u2208R, (5,4)\u2208R" but "(6,4)\\not\u2208R," the relation "R" is not transitive.

Since "(4,4), (5,5), (6,6),\\in R," the relation "R" is reflexive.


14. {(6,5)(7,6)(4,5)(5,4)}

We have "(6,5)\u2208R," but "(5,6)\\not\u2208R," thus "R" is not symmetric.

We have "(4,5)\u2208R, (5,4)\u2208R" but "4\\not=5," thus "R" is not antisymmetric.

Since "(6,5)\u2208R, (5,4)\u2208R" but "(6,4)\\not\u2208R," the relation "R" is not transitive.

Since "(4,4), (5,5),(6,6), (7,7)\u2209R," the relation "R" is irreflexive, hence, it is not reflexive.


15. {(3,3)(4,4)(4,5)(5,4)(5,5)}

The relation "R" is symmetric.

We have "(4,5)\u2208R, (5,4)\u2208R" but "4\\not=5," thus "R" is not antisymmetric.

The relation "R" is transitive.

Since "(3,3),(4,4), (5,5)\\in R," the relation "R" is reflexive.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS