The set S consists of all integers from 1 to 2007 inclusive. For how many
elements n in S is f(n)=2n³+n²-n-2 over n²-2 an integer?
"=\\dfrac{2x(x^2-2)+(x^2-2)+3x}{x^2-2}"
"=2x+1+\\dfrac{3x}{x^2-2}"
Given "n\\in \\Z^+"
"n=1, 2(1)+1+\\dfrac{3(1)}{(1)^2-2}=0, 0\\in \\Z"
"\\dfrac{x^2-3x-2}{x^2-2}\\le0"
"\\dfrac{x^2-3x-2}{x^2-2}\\le0"
"x^2-3x-2=0"
"x_1=\\dfrac{3-\\sqrt{17}}{2}, x_2=\\dfrac{3+\\sqrt{17}}{2}"
Since "n" is positive integer, we consider "n=2,3."
"n=3,\\dfrac{3n}{n^2-2}=\\dfrac{3(3)}{(3)^2-2}=\\dfrac{9}{7}, is\\ not \\ integer"
"n=1,n=3."
Comments
Leave a comment