Two functions f : R → R and g : R → R are defined by f(x) = 5x3 + 1 and g(x) = 2x − 3 for all x ∈ R.
Determine the inverse of (f -1 ◦ g) and (g ◦ f )(2) and ( f ◦ g)(2).
f(x)=5x3+1g(x)=2x−3f(x)=5x^3+1\\ g(x)=2x-3\\f(x)=5x3+1g(x)=2x−3
Find f-1
x=5y3+1f−1=y=(x−1)/53x=5y^3+1\\ f^{-1}=y=\sqrt[3]{(x-1)/5}x=5y3+1f−1=y=3(x−1)/5
f−1(g)=(2x−3−1)/53=(2x−4)/53f^{-1}(g)=\sqrt[3]{(2x-3-1)/5}=\sqrt[3]{(2x-4)/5}f−1(g)=3(2x−3−1)/5=3(2x−4)/5
g(f(2))=2(5x3+1)−3=2(5(23)+1)−3=79g(f(2))=2(5x^3+1)-3=2(5(2^3)+1)-3=79g(f(2))=2(5x3+1)−3=2(5(23)+1)−3=79
f(g(2))=5(2x−3)3+1=5(2(2)−3)3+1=6f(g(2))=5(2x-3)^3+1=5(2(2)-3)^3+1=6f(g(2))=5(2x−3)3+1=5(2(2)−3)3+1=6
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments