Question #341556

Compute each of the double double sums below

(a)3∑(i=1) 2∑(j=2) (i+j)

(b)3∑(i=0) 2∑(j=0) (2i+3j)


1
Expert's answer
2022-05-19T17:54:51-0400

(a)


i=13j=22(i+j)=i=13(i+2)\sum_{i=1}^{3}\sum_{j=2}^{2}( i+j) =\sum_{i=1}^{3}(i+2)=1+2+2+2+3+2=12=1+2+2+2+3+2=12

(b)


i=03j=02(2i+3j)\sum_{i=0}^{3} \sum_{j=0}^{2} (2i+3j)=i=03(2i+(2i+3)+(2i+6))= \sum_{i=0}^{3}( 2i+(2i+3)+(2i+6))=i=03(6i+9)= \sum_{i=0}^{3}( 6i+9)=9+6+9+62+9+63+9=9+6+9+6\cdot2+9+6\cdot3+9

=72=72

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS