Answer to Question #337784 in Discrete Mathematics for Wende

Question #337784

solve the following recurrence relations.


a) T(n)=T(n-1)+1 , for n≥ 2 and T(1)=1.


b) an+12an=2n,a_{n+1}-2a_n=2n, for n≥1 and T(1)=2.


1
Expert's answer
2022-05-11T14:35:51-0400

a). We see that T(2)=T(1)+1=2;T(2)=T(1)+1=2; T(3)=T(2)+1=2+1=3T(3)=T(2)+1=2+1=3. We make a conjecture that T(k)=kT(k)=k, kNk\in{\mathbb{N}}. Then, T(k+1)=T(k)+1=k+1T(k+1)=T(k)+1=k+1. Thus, the conjecture is true.

b). an+1=2(an+n)=2(2(an1+n1)+n)=22an1+22(n1)+2n=23an2+23(n2)+22(n1)+2na_{n+1}=2(a_n+n)=2(2(a_{n-1}+n-1)+n)=2^2a_{n-1}+2^2(n-1)+2n=2^3a_{n-2}+2^3(n-2)+2^2(n-1)+2n

In case we continue the procedure, we will get: an+1=2n2+2n+2n12+2n23+..+2na_{n+1}=2^{n}2+2^{n}+2^{n-1}2+2^{n-2}3+..+2n. We can present part of a formula as: 2n+2n12+2n23+..+2n=2n(1+221+322++n21n)=2nk=1nk21k=2n(4(12)n+1(n+1)4(12)n+1+4)=2(n+2)+2n+22^{n}+2^{n-1}2+2^{n-2}3+..+2n=2^n(1+2\cdot2^{-1}+3\cdot2^{-2}+\ldots+n2^{1-n})=2^n\sum_{k=1}^nk2^{1-k}=2^n(-4(\frac12)^{n+1}(n+1)-4(\frac12)^{n+1}+4)=-2(n+2)+2^{n+2}

We used a formula for arithmetic-geometric progression.

We receive: an=2n2(n+1)+2n+1a_n=2^n-2(n+1)+2^{n+1}. It remains to check the obtained formula for ana_n : 2an+2n=2n+14(n+1)+2n+2+2n=2n+12(n+2)+2n+22a_n+2n=2^{n+1}-4(n+1)+2^{n+2}+2n=2^{n+1}-2(n+2)+2^{n+2}. Thus, it is true.

Answer: a). T(k)=kT(k)=k, kNk\in{\mathbb{N}}. b). an=2n2(n+1)+2n1a_{n}=2^n-2(n+1)+2^{n-1}, nN.n\in{\mathbb{N}}..


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment