Show that ( p → q) ∧ ( q → r) → ( p→ r) is a tautology by using truth table or rules of
logical equivalence
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c:c}\n p & q & r & p\\rightarrow q & q\\rightarrow r & (p\\rightarrow q)\\land (q\\rightarrow r) & p\\rightarrow r& \n\n (p\\rightarrow q)\\land (q\\rightarrow r) \\rightarrow ( p\\rightarrow r)\n\n\\\\ \\hline\n T & T & T &T&T&T&T&T\n\\\\\n \\hdashline\n T & T & F&T&F&F&F&T\n\\\\\n\n \\hdashline\nT&F&T&F&T&F&T&T\n\\\\\n\n \\hdashline\nF&T&T&T&T&T&T&T\n\\\\\n\n \\hdashline\nT&F&F&F&T&F&F&T\n\\\\\n\n \\hdashline\nF&T&F&T&F&F&T&T\n\\\\\n\n \\hdashline\nF&F&T&T&T&T&T&T\n\\\\\n\n \\hdashline\nF&F&F&T&T&T&T&T\n\\end{array}"
Comments
Leave a comment