Question #332192

Suppose the domain of the propositional function P(x) consists of the integers −2,

−1, 0, 1, 2. Write out each of these propositions using disjunctions, conjunctions, and

negations.

a) ∃xP(x)

b) ∀xP(x)


c) ∃x¬P(x)

d) ∀x((x ≠ 1) → ¬P(x))


1
Expert's answer
2022-04-26T17:41:52-0400

One of the ways is presented below

a). xP(x)\exists x P(x) can be rewritten as: P(2)P(1)P(0)P(1)P(2)P(-2)\lor P(-1)\lor P(0)\lor P(1)\lor P(2)

b). P(x)\forall P(x) can be rewritten in the following form: P(2)P(1)P(0)P(1)P(2)P(-2)\land P(-1)\land P(0)\land P(1)\land P(2)

c). x¬P(x)\exists x\lnot P(x) can be rewritten as: ¬(P(2)P(1)P(0)P(1)P(2))\lnot(P(-2)\land P(-1)\land P(0)\land P(1)\land P(2))

d). x((x1)¬P(x))\forall x((x\neq1)\rightarrow\lnot P(x)) can be rewritten as: ¬((¬(21)P(2))(¬(11)P(1))(¬(01)P(0))(¬(11)P(1))(¬(21)P(2)))\lnot((\lnot(-2\neq-1)\lor P(-2))\land(\lnot(-1\neq-1)\lor P(-1))\land(\lnot(0\neq-1)\lor P(0))\land(\lnot(1\neq-1)\lor P(1))\land(\lnot(2\neq-1)\lor P(2)))



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS