Suppose the domain of the propositional function P(x) consists of the integers −2,
−1, 0, 1, 2. Write out each of these propositions using disjunctions, conjunctions, and
negations.
a) ∃xP(x)
b) ∀xP(x)
c) ∃x¬P(x)
d) ∀x((x ≠ 1) → ¬P(x))
One of the ways is presented below
a). "\\exists x P(x)" can be rewritten as: "P(-2)\\lor P(-1)\\lor P(0)\\lor P(1)\\lor P(2)"
b). "\\forall P(x)" can be rewritten in the following form: "P(-2)\\land P(-1)\\land P(0)\\land P(1)\\land P(2)"
c). "\\exists x\\lnot P(x)" can be rewritten as: "\\lnot(P(-2)\\land P(-1)\\land P(0)\\land P(1)\\land P(2))"
d). "\\forall x((x\\neq1)\\rightarrow\\lnot P(x))" can be rewritten as: "\\lnot((\\lnot(-2\\neq-1)\\lor P(-2))\\land(\\lnot(-1\\neq-1)\\lor P(-1))\\land(\\lnot(0\\neq-1)\\lor P(0))\\land(\\lnot(1\\neq-1)\\lor P(1))\\land(\\lnot(2\\neq-1)\\lor P(2)))"
Comments
Leave a comment