Find f ◦ g and g ◦ f , where f (x) = 3x - 2 and g(x) = 2x + 2, are functions from R to R
(f∘g)(x)=f(g(x))=3g(x)−2=3(2x+2)−2=6x+4(f\circ g)(x)=f(g(x))=\\ 3g(x)-2=3(2x+2)-2=6x+4(f∘g)(x)=f(g(x))=3g(x)−2=3(2x+2)−2=6x+4
(g∘f)(x)=g(f(x))==2f(x)+2=2(3x−2)+2=6x−2(g\circ f)(x)=g(f(x))=\\ =2f(x)+2=2(3x-2)+2=6x-2(g∘f)(x)=g(f(x))==2f(x)+2=2(3x−2)+2=6x−2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments