"Suppose\\,\\,p_1=1.\\\\Then\\\\p_1\\land \\left( p_1\\rightarrow p_4 \\right) =p_1\\land \\left( \\lnot p_1\\lor p_4 \\right) =p_1\\land p_4=p_4\\Rightarrow p_4=1\\\\p_4\\land \\left( p_4\\rightarrow p_2 \\right) =p_4\\land \\left( \\lnot p_4\\lor p_2 \\right) =p_4\\land p_2=p_2\\Rightarrow p_2=1\\\\p_2\\land \\left( p_2\\rightarrow p_5 \\right) =p_2\\land \\left( \\lnot p_2\\lor p_5 \\right) =p_2\\land p_5=p_5\\Rightarrow p_5=1\\\\p_5\\land \\left( p_5\\rightarrow p_3 \\right) =p_5\\land \\left( \\lnot p_5\\lor p_3 \\right) =p_5\\land p_3=p_3\\Rightarrow p_3=1\\\\In\\,\\,this\\,\\,case\\,\\,p_1=p_2=p_3=p_4=p_5=1\\\\Suppose\\,\\,p_1=0.\\\\Then\\\\\\lnot p_1\\land \\left( p_3\\rightarrow p_1 \\right) =\\lnot p_1\\land \\left( \\lnot p_3\\lor p_1 \\right) =\\lnot p_1\\land \\lnot p_3=\\lnot p_3\\Rightarrow p_3=0\\\\\\lnot p_3\\land \\left( p_5\\rightarrow p_3 \\right) =\\lnot p_3\\land \\left( \\lnot p_5\\lor p_3 \\right) =\\lnot p_3\\land \\lnot p_5=\\lnot p_5\\Rightarrow p_5=0\\\\\\lnot p_5\\land \\left( p_2\\rightarrow p_5 \\right) =\\lnot p_5\\land \\left( \\lnot p_2\\lor p_5 \\right) =\\lnot p_5\\land \\lnot p_2=\\lnot p_2\\Rightarrow p_2=0\\\\\\lnot p_2\\land \\left( p_4\\rightarrow p_2 \\right) =\\lnot p_2\\land \\left( \\lnot p_4\\lor p_2 \\right) =\\lnot p_2\\land \\lnot p_4=\\lnot p_4\\Rightarrow p_4=0\\\\In\\,\\,this\\,\\,case\\,\\,p_1=p_2=p_3=p_4=p_5=0\\\\In\\,\\,both\\,\\,cases\\,\\,p_1=p_2=p_3=p_4=p_5, which\\,\\,means\\,\\,the\\,\\,propositions\\,\\,are\\,\\,equivalent."
Comments
Leave a comment