11•j=1(mod 4). Find j
Let us solve 11⋅j=1(mod 4).11\cdot j=1(\mod 4).11⋅j=1(mod4). This congruence is equivalent to (11−12)⋅j=1(mod 4),(11-12)\cdot j=1(\mod 4),(11−12)⋅j=1(mod4), and hence −j=1(mod 4).- j=1(\mod 4).−j=1(mod4). We conclude that j=−1(mod 4)=3(mod 4).j=-1(\mod 4)=3(\mod 4).j=−1(mod4)=3(mod4). Therefore, j=3+4t,j=3+4t,j=3+4t, where t∈Z.t\in \Z.t∈Z.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments