Show that ¬p→(q→r) and q→(p ∨ r) are logically equivalent
The truth table for ¬p→(q→r)¬p→(q→r)¬p→(q→r) and q→(p∨r)q→(p ∨ r)q→(p∨r) is shown below
From the 6th column (from left) and the 8th column, we can see that
¬p→(q→r)¬p→(q→r)¬p→(q→r) and q→(p∨r)q→(p ∨ r)q→(p∨r) are logically equivalent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment