show in a truth table that p↔q and (p^q) v (¬p^¬q) are logically equivalent.
Truth table for "(p\\wedge q) \\vee (\\bar p\\wedge \\bar q)" and "p\\leftrightarrow q":
"\\begin{vmatrix}\np & q & p\\wedge q & \\bar p\\wedge \\bar q & (p\\wedge q) \\vee (\\bar p\\wedge \\bar q) & p\\leftrightarrow q\\\\\n0 & 0 & 0 & 1 & 1 & 1\\\\\n0 & 1 & 0 & 0 & 0 & 0\\\\\n1 & 0 & 0 & 0 & 0 & 0\\\\\n1 & 1 & 1 & 0 & 1 & 1\\\\\n\\end{vmatrix}"
Since these expressions takes equal values for all "p,q", they are logically equivalent.
Comments
Leave a comment