show that p ↔ q and (p ∧ q) ∨ (¬p ∧ ¬q) are logically equivalent
Let us show that "p \u2194 q" and "(p \u2227 q) \u2228 (\u00acp \u2227 \u00acq)" are logically equivalent. It follow that
"p \u2194 q=(p\\to q)\\land (q\\to p)\n\\\\=(\\neg p\\lor q)\\land (\\neg q\\lor p)\n\\\\=(\\neg p\\land\\neg q)\\lor(\\neg p\\land p)\\lor(q\\land\\neg q)\\lor(q\\land p)\n\\\\=(\\neg p\\land\\neg q)\\lor F\\lor F\\lor(q\\land p)\n\\\\=(\\neg p\\land\\neg q)\\lor (p\\land q)\n\\\\= (p\\land q)\\lor (\\neg p\\land\\neg q)."
Comments
Leave a comment