g.c.d(a,b)=1
Solution (a)
To check the inverse for 678 modulo 2970 exists or not, we can write
2978=678×4+258678=258×2+162258=162×1+96162=96×1=6696=66×1+3066=30×2+630=6×5+0
Hence g.c.d(2978,678)=6=1
Therefore, the inverse of 678 modulo 2970 does not exist.
Solution (a)
To check the inverse for 137 modulo 2350 exists or not, we can write
2350=137×17+21137=21×6+1121=11×1+1011=10×1+1
Hence g.c.d(2350,137)=1
Therefore, an inverse of 137 modulo 2350 exists.
Now to find the inverse we proceed as follows.
11+10(–1)=121+11(–1)=10137+21(–6)=112350+137(–17)=21
Therefore,
11+(21+11(–1))(–1)=111–21+11=111×2+21(−1)=1
Then
(137+21(−6))×2+21(−1)=1137×2+21×(−13)=1
And finally
137×2+(2350+137×(−17))(−13)=12350×2(−13)+137×2(223)=1
Hence Bezout coefficients are (-13) and (223)
And the invers of 137 modulo 2350 is 223
Comments