Question #306251

Find out if the inverse exists for the following, give reasoning behind your answer. If you conclude that the inverse exists then find the B ́ezout coefficients and the inverse of the modulo. [Hint: Example 2 of section 4.4 in the book]


(a) - (3 points) 678 modulo 2970

(b) - (3 points) 137 modulo 2350


1
Expert's answer
2022-03-08T10:12:02-0500

Solution


According to, Euclidean Algorithm, the inverse of a mod b exists, if and only if

g.c.d(a,b)=1g.c.d {\color{Red} (a, b)} = 1


Here g.c.d stands for the greatest common divisor.

Solution (a)


To check the inverse for 678 modulo 2970 exists or not, we can write


2978=678×4+258678=258×2+162258=162×1+96162=96×1=6696=66×1+3066=30×2+630=6×5+02978 = 678 × 4 + 258\\ 678 = 258 × 2 + 162\\ 258 = 162 × 1 + 96\\ 162 = 96 × 1 = 66\\ 96 = 66 × 1 + 30\\ 66 = 30 × 2 + 6 \\ 30 = 6 × 5 + 0 \\


Hence g.c.d(2978,678)=61g.c.d (2978, 678) = 6 ≠ 1


Therefore, the inverse of 678 modulo 2970 does not exist.  



Solution (a)


To check the inverse for 137 modulo 2350 exists or not, we can write


2350=137×17+21137=21×6+1121=11×1+1011=10×1+12350 = 137 × 17 + 21\\ 137 = 21 × 6 + 11\\ 21 = 11 × 1 + 10\\ 11 = 10 × 1 + 1 \\


Hence g.c.d(2350,137)=1g.c.d (2350, 137) = 1


Therefore, an inverse of 137 modulo 2350 exists.  


Now to find the inverse we proceed as follows.


11+10(1)=121+11(1)=10137+21(6)=112350+137(17)=2111 + 10 (– 1) = 1\\ 21 + 11 (– 1) = 10\\ 137 + 21 (– 6) = 11\\ 2350 + 137 (– 17) = 21


Therefore,

11+(21+11(1))(1)=11121+11=111×2+21(1)=111 + (21 + 11 (– 1)) (– 1) = 1\\ 11 – 21 + 11 = 1 \\ 11 × 2 + 21 (-1) = 1


Then

(137+21(6))×2+21(1)=1137×2+21×(13)=1(137 + 21 (-6)) × 2 + 21 (-1) = 1\\ 137 × 2 + 21 × (-13) = 1

 

And finally

137×2+(2350+137×(17))(13)=12350×2(13)+137×2(223)=1137 × 2 + (2350 + 137 × (-17))(-13) =1 \\ 2350 × 2(-13) + 137 × 2(223) = 1


Hence Bezout coefficients are (-13) and (223)

 

And the invers of 137 modulo 2350 is 223223




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS