Show, by the use of the truth table/matrix, that the statement (p v q) v [( ¬p) ∧ (¬q)] is a tautology.
Let us construct the truth table of the statement "(p\\lor q) \\lor [( \u00acp) \u2227 (\u00acq)]"
"\\ \\begin{array}{||c|c||c|c|c|c|c||} \\hline\\hline p & q & \\neg p & \\neg q & p\\lor q&( \u00acp) \u2227 (\u00acq) & (p\\lor q) \\lor [( \u00acp) \u2227 (\u00acq)]\\\\ \\hline\\hline\n 0 & 0 & 1 & 1 & 0 & 1 & 1\\\\\n \\hline 0 & 1 & 1 & 0 & 1 &0 & 1 \\\\ \n\\hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\\\\n \\hline 1 & 1 & 0 & 0 & 1 & 0 & 1 \\\\ \\hline\\hline \\end{array}"
It follows that the statement "(p\\lor q) \\lor [( \u00acp) \u2227 (\u00acq)]" is a tautology.
Comments
Leave a comment