Question #305421

Show, by the use of the truth table/matrix, that the statement (p v q) v [( ¬p) ∧ (¬q)] is a tautology.


1
Expert's answer
2022-03-03T17:54:21-0500

Let us construct the truth table of the statement (pq)[(¬p)(¬q)](p\lor q) \lor [( ¬p) ∧ (¬q)]


 pq¬p¬qpq(¬p)(¬q)(pq)[(¬p)(¬q)]0011011011010110011011100101\ \begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & \neg p & \neg q & p\lor q&( ¬p) ∧ (¬q) & (p\lor q) \lor [( ¬p) ∧ (¬q)]\\ \hline\hline 0 & 0 & 1 & 1 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 1 &0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline\hline \end{array}


It follows that the statement (pq)[(¬p)(¬q)](p\lor q) \lor [( ¬p) ∧ (¬q)] is a tautology.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS