Show, by the use of the truth table/matrix, that the statement (p v q) v [( ¬p) ∧ (¬q)] is a tautology.
Let us construct the truth table of the statement (p∨q)∨[(¬p)∧(¬q)](p\lor q) \lor [( ¬p) ∧ (¬q)](p∨q)∨[(¬p)∧(¬q)]
pq¬p¬qp∨q(¬p)∧(¬q)(p∨q)∨[(¬p)∧(¬q)]0011011011010110011011100101\ \begin{array}{||c|c||c|c|c|c|c||} \hline\hline p & q & \neg p & \neg q & p\lor q&( ¬p) ∧ (¬q) & (p\lor q) \lor [( ¬p) ∧ (¬q)]\\ \hline\hline 0 & 0 & 1 & 1 & 0 & 1 & 1\\ \hline 0 & 1 & 1 & 0 & 1 &0 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline\hline \end{array} p0011q0101¬p1100¬q1010p∨q0111(¬p)∧(¬q)1000(p∨q)∨[(¬p)∧(¬q)]1111
It follows that the statement (p∨q)∨[(¬p)∧(¬q)](p\lor q) \lor [( ¬p) ∧ (¬q)](p∨q)∨[(¬p)∧(¬q)] is a tautology.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments