Question #304668

12. Solve the recurrence relation an=an-1+n2,where a0=7 by substitution


1
Expert's answer
2022-03-07T04:12:05-0500

Let us solve the recurrence relation an=an1+n2,a_n=a_{n-1}+n^2, where a0=7.a_0=7.


The characteristic equation k1=0k-1=0 has the root k=1,k=1, and hence the general solutionis of the form:

an=C1n+bn,a_n=C\cdot 1^n+b_n, where bn=n(an2+bn+c)=an3+bn2+cn.b_n=n(an^2+bn+c)=an^3+bn^2+cn.

It follows that

an3+bn2+cn=a(n1)3+b(n1)2+c(n1)+n2.an^3+bn^2+cn=a(n-1)^3+b(n-1)^2+c(n-1)+n^2.

For n=0n=0 we get 0=a+bc,0=-a+b-c, and hence a=bc.a=b-c.

For n=1n=1 we get a+b+c=1,a+b+c=1, and thus bc+b+c=1,b-c+b+c=1, that is b=12.b=\frac{1}2. Therefore, a=12c.a=\frac{1}2-c.

For n=1n=-1 we get a+bc=8a+4b2c+1.-a+b-c=-8a+4b-2c+1.

It follows that

c12+12c=8c4+22c+1,c-\frac{1}2+\frac{1}2-c=8c-4+2-2c+1, and therefore 6c=1.6c=1.

We conclude that c=16, a=1216=13.c=\frac{1}6,\ a=\frac{1}2-\frac{1}6=\frac{1}3.

Consequently, the general solutionis of the form:

an=C+13n3+12n2+16n.a_n=C+\frac{1}3n^3+\frac{1}2n^2+\frac{1}6n.

It follows that 7=a0=C,7=a_0=C, and we conclude that the particular solution is the following:

an=7+13n3+12n2+16n.a_n=7+\frac{1}3n^3+\frac{1}2n^2+\frac{1}6n.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS