show that (A ∪ B)\C ⊆ A ∪ (B\C)
Let x∈(A∪B)∖Cx \in (A\cup B)\setminus Cx∈(A∪B)∖C. Then,
x∈A∪B;x∉C⇒x∈A or x∈B;x∉C⇒x∈A∖C or x∈B∖Cx \in A \cup B ; x \notin C \\ \Rightarrow x \in A ~\text{or}~ x \in B ; x \notin C\\ \Rightarrow x \in A\setminus C ~\text{or}~ x \in B\setminus C\\x∈A∪B;x∈/C⇒x∈A or x∈B;x∈/C⇒x∈A∖C or x∈B∖C
Since x∈A or x∈B∖C,x \in A~ \text{or~} x \in B \setminus C,x∈A or x∈B∖C, we get x∈A∪(B∖C).x \in A\cup (B \setminus C).x∈A∪(B∖C).
Therefore,
(A∪B)∖C⊆A∪(B∖C)(A ∪ B)\setminus C ⊆ A ∪ (B\setminus C)(A∪B)∖C⊆A∪(B∖C)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments