show that (A ∪ B)\C ⊆ A ∪ (B\C)
Let "x \\in (A\\cup B)\\setminus C". Then,
"x \\in A \\cup B ; x \\notin C \\\\ \\Rightarrow\nx \\in A ~\\text{or}~ x \\in B ; x \\notin C\\\\ \\Rightarrow\nx \\in A\\setminus C ~\\text{or}~ x \\in B\\setminus C\\\\"
Since "x \\in A~ \\text{or~} x \\in B \\setminus C," we get "x \\in A\\cup (B \\setminus C)."
Therefore,
"(A \u222a B)\\setminus C \u2286 A \u222a (B\\setminus C)"
Comments
Leave a comment