Question #300513

show that (A ∪ B)\C ⊆ A ∪ (B\C)


1
Expert's answer
2022-02-22T03:37:03-0500

Let x(AB)Cx \in (A\cup B)\setminus C. Then,

xAB;xCxA or xB;xCxAC or xBCx \in A \cup B ; x \notin C \\ \Rightarrow x \in A ~\text{or}~ x \in B ; x \notin C\\ \Rightarrow x \in A\setminus C ~\text{or}~ x \in B\setminus C\\


Since xA or xBC,x \in A~ \text{or~} x \in B \setminus C, we get xA(BC).x \in A\cup (B \setminus C).

Therefore,

(AB)CA(BC)(A ∪ B)\setminus C ⊆ A ∪ (B\setminus C)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS