Construct the truth table of the following proposition.
1. (p∧q)→(p∨q)
2. ~(p→q)
3. (p∨q)∧~p
Let us construct the truth table of the following proposition.
1. (p∧q)→(p∨q)(p∧q)→(p∨q)(p∧q)→(p∨q)
pqp∧qp∨q(p∧q)→(p∨q)00001010111001111111\begin{array}{||c|c||c|c|c||} \hline\hline p & q & p∧q & p∨q & (p∧q)→(p∨q)\\ \hline\hline 0 & 0 & 0 & 0 & 1\\ \hline 0 & 1 & 0 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 1\\ \hline 1 & 1 & 1 & 1 & 1\\ \hline\hline \end{array}p0011q0101p∧q0001p∨q0111(p∧q)→(p∨q)1111
2. ∼(p→q)\sim(p→q)∼(p→q)
pqp→q∼(p→q)0010011010011110\begin{array}{||c|c||c|c|c||} \hline\hline p & q & p→q & \sim(p→q) \\ \hline\hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline\hline \end{array}p0011q0101p→q1101∼(p→q)0010
3. (p∨q)∧∼p(p∨q)∧\sim p(p∨q)∧∼p
pq∼pp∨q(p∨q)∧∼p00100011111001011010\begin{array}{||c|c||c|c|c||} \hline\hline p & q & \sim p & p∨q & (p∨q)∧\sim p\\ \hline\hline 0 & 0 & 1 & 0 & 0\\ \hline 0 & 1 & 1 & 1 & 1\\ \hline 1 & 0 & 0 & 1 & 0\\ \hline 1 & 1 & 0 & 1 & 0\\ \hline\hline \end{array}p0011q0101∼p1100p∨q0111(p∨q)∧∼p0100
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments